Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 149(6): 1837-1848, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38345564

RESUMO

Radix glycyrrhizae (licorice) is extensively employed in traditional Chinese medicine, and serves as a crucial raw material in industries such as food and cosmetics. The quality of licorice from different origins varies greatly, so classification of its geographical origin is particularly important. This study proposes a technique for fine structure recognition and segmentation of hyperspectral images of licorice using deep learning U-Net neural networks to segment the tissue structure patterns (phloem, xylem, and pith). Firstly, the three partitions were separately labeled using the Labelme tool, which was utilized to train the U-Net model. Secondly, the obtained optimal U-Net model was applied to predict three partitions of all samples. Lastly, various machine learning models (LDA, SVM, and PLS-DA) were trained based on segmented hyperspectral data. In addition, a threshold method and a circumcircle method were applied to segment licorice hyperspectral images for comparison. The results revealed that compared with the threshold segmentation method (which yielded SVM classifier accuracies of 99.17%, 91.15%, and 92.50% on the training set, validation set, and test set, respectively), the U-Net segmentation method significantly enhanced the accuracy of origin classification (99.06%, 94.72% and 96.07%). Conversely, the circumcircle segmentation method did not effectively improve the accuracy of origin classification (99.65%, 91.16% and 92.13%). By integrating Raman imaging of licorice, it can be inferred that the U-Net model, designed for region segmentation based on the inherent tissue structure of licorice, can effectively improve the accuracy origin classification, which has positive significance in the development of intelligence and information technology of Chinese medicine quality control.


Assuntos
Glycyrrhiza , Imageamento Hiperespectral , Glycyrrhiza/química , Redes Neurais de Computação , Aprendizado de Máquina , Raízes de Plantas , Processamento de Imagem Assistida por Computador/métodos
2.
J Ethnopharmacol ; 314: 116600, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196811

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rhizoma Coptidis (RC), the dried rhizome of Coptis Chinensis Franch., can dispel dampness and heat within the body and has been traditionally used for the treatment of cardiovascular disease (CVD)-associated problems including hyperlipidemia in China. Berberine (BBR) is the main active component of RC, which has been shown to possess significant therapeutic potential. However, only 0.14% of BBR is metabolized in the liver, and the extremely low bioavailability (<1%) and blood concentration of BBR in experimental and clinical settings is insufficient to achieve the effects as observed under in vitro conditions, which imposes challenges to explain its excellent pharmacological actions. Intense efforts are currently being devoted to defining its specific pharmacological molecular targets, while the exploration from the perspective of its pharmacokinetic disposition has rarely been reported to date, which could hardly make a comprehensive understanding of its hypolipidemic enigma. AIM OF THE STUDY: This study made a pioneering endeavor to unveil the hypolipidemic mechanism of BBR from RC focusing on its unique intestines-erythrocytes-mediated bio-disposition. MATERIALS AND METHODS: The fate of BBR in intestines and erythrocytes was probed by a rapid and sensitive LC/MS-IT-TOF method. To analyze the disposition of BBR, a reliable HPLC method was subsequently developed and validated for simultaneous determination of BBR and its key active metabolite oxyberberine (OBB) in whole blood, tissues, and excreta. Meanwhile, the enterohepatic circulation (BDC) of BBR and OBB was verified by bile duct catheterization rats. Finally, lipid overloading models of L02 and HepG2 cells were employed to probe the lipid-lowering activity of BBR and OBB at in vivo concentration. RESULTS: The results showed that BBR underwent biotransformation in both intestines and erythrocytes, and converted into the major metabolite oxyberberine (OBB). The AUC0-t ratio of total BBR to OBB was approximately 2:1 after oral administration. Besides, the AUC0-t ratio of bound BBR to its unbound counterpart was 4.6:1, and this ratio of OBB was 2.5:1, indicative of abundant binding-type form in the blood. Liver dominated over other organs in tissue distribution. BBR was excreted in bile, while the excretion of OBB in feces was significantly higher than that in bile. Furthermore, the bimodal phenomenon of both BBR and OBB disappeared in BDC rats and the AUC0-t was significantly lower than that in the sham-operated control rats. Interestingly, OBB significantly decreased triglycerides and cholesterol levels in lipid overloading models of L02 and HepG2 cells at in vivo-like concentration, which was superior to the prodrug BBR. CONCLUSIONS: Cumulatively, BBR underwent unique extrahepatic metabolism and disposition into OBB by virtue of intestines and erythrocytes. BBR and OBB were mainly presented and transported in the protein-bound form within the circulating erythrocytes, potentially resulting in hepatocyte targeting accompanied by obvious enterohepatic circulation. The unique extrahepatic disposition of BBR via intestines and erythrocytes conceivably contributed enormously to its hypolipidemic effect. OBB was the important material basis for the hypolipidemic effect of BBR and RC.


Assuntos
Berberina , Ratos , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Extratos Vegetais/farmacologia , Triglicerídeos/metabolismo , Intestinos , Eritrócitos/metabolismo
3.
J Ethnopharmacol ; 301: 115775, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36198377

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Palmatine (Pal) is a major bioactive alkaloid originated from ancient Chinese herbal medicine Cortex Phellodendri Amurensis (CPA), which has long been applied to treat hyperuricemia (HUA)-related diseases. Pal possesses potent anti-inflammatory and anti-oxidant effects against metabolic diseases. However, its potential beneficial effect against PO (potassium oxonate)/HX (hypoxanthine)-induced HUA remains elusive. AIM OF THE STUDY: This study aimed to investigate the potential pharmacological effect and mechanism of Pal on PO/HX-induced HUA in mice. MATERIAL AND METHODS: A mouse model of HUA was established by co-administration of PO/HX once daily for 7 consecutive days. The HUA mice were orally given three doses (25, 50 and 100 mg/kg) of Pal daily for a week. Febuxostat (Feb, 5 mg/kg) was given as a positive control. At the scheduled termination of the experiment, the whole blood, liver and kidney were collected for subsequent analyses. The concentrations of uric acid (UA), creatinine (CRE) and blood urea nitrogen (BUN), and activities of adenosine deaminase (ADA) and xanthine oxidase (XOD) were evaluated. Histopathological alterations of the kidney were detected by H&E staining. The inflammatory and oxidative stress status was detected by assay kits. Additionally, key proteins involved in the urate transporter, Keap1-Nrf2 and TXNIP/NLRP3 signaling pathways were evaluated by immunohistochemistry and Western blotting. Finally, molecular docking was employed to probe the binding characteristics of Pal and target proteins Keap1, NLRP3, URAT1 and HO-1. RESULTS: Administration of Pal substantially decreased the elevated kidney weight, lowered UA, CRE and BUN levels, and attenuated abnormal histopathological alterations. Meanwhile, treatment with Pal also dramatically lowered hepatic XOD and ADA activities. Besides, Pal treatment effectively mitigated the renal inflammatory and oxidative stress markers. Further mechanistic investigation indicated Pal distinctly downregulated the protein levels of GLUT9 and URAT1, while up-regulated the expression levels of OAT1 and ABCG2. Pal also restored Nrf2 activation, promoted subsequent expression of anti-oxidative enzymes, and downregulated the expressions of TXNIP, NLRP3, apoptosis-associated speck-like (ASC), caspase-1, IL-1ß and IL-18. Molecular docking analysis also indicated Pal firmly bound with Keap1, NLRP3, URAT1 and HO-1. CONCLUSIONS: These findings indicated that Pal exhibited favorable anti-HUA effect via modulating the expressions of transporter-related proteins and suppressing XOD activity. Furthermore, Pal also alleviated HUA-induced kidney injury, which was at least partially related to restoring Keap1-Nrf2 pathway and inhibiting TXNIP/NLRP3 inflammasome. Our investigation was envisaged to provide experimental support for the traditional application of CPA and CPA-containing classical herbal formulas in the management of HUA-related diseases and might provide novel dimension to the clinical application of Pal.


Assuntos
Hiperuricemia , Ácido Úrico , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Xantina Oxidase/metabolismo , Rim , Creatinina
4.
Biol Trace Elem Res ; 201(7): 3311-3322, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36224316

RESUMO

Metabolic-associated fatty liver disease (MAFLD) (previously known as nonalcoholic fatty liver disease (NAFLD)) is a disease with high worldwide prevalence, but with limited available therapeutic interventions. Autophagy is a cell survival mechanism for clearing excess lipids in hepatocytes and affects the occurrence and development of MAFLD. In addition, some studies have shown that magnesium deficiency is common in patients with obesity and metabolic syndrome. Magnesium supplementation can effectively improve metabolism-related diseases such as obesity and fatty liver. Our study successfully constructed a cellular model of MAFLD by 1 mM free fatty acid (FFA) intervention in LO2 cells for 24 h, and there was an increase in lipid accumulation in hepatocytes after FFA intervention. Magnesium supplementation was shown to reduce lipid deposition in hepatocytes induced by FFA, and Western blotting (WB) analysis showed that magnesium supplementation could downregulate the expression of Fasn and SREBP1 and increase the expression of LPL, suggesting that magnesium can reduce lipid accumulation by reducing lipid synthesis and increasing lipid oxidation. Magnesium supplementation could affect cellular lipid metabolism by activating the AMPK/mTOR pathway to stimulate autophagy. Our results identified a relationship between magnesium and lipid accumulation in hepatocytes and showed that magnesium supplementation reduced lipid deposition in hepatocytes by activating autophagy by activating the AMPK-mTOR pathway.


Assuntos
Fígado , Hepatopatia Gordurosa não Alcoólica , Humanos , Fígado/metabolismo , Proteínas Quinases Ativadas por AMP , Magnésio/metabolismo , Transdução de Sinais , Hepatócitos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Metabolismo dos Lipídeos , Autofagia , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Ácidos Graxos não Esterificados/uso terapêutico , Obesidade/metabolismo , Suplementos Nutricionais
5.
Phytomedicine ; 101: 154135, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35509133

RESUMO

BACKGROUND: Oxyberberine (OBB), an important in vivo metabolite of berberine, exerts superior hypoglycemia effect. However, the underlying mechanism remains obscure. Heme oxygenase-1 (HO-1) holds a crucial status in the pathogenesis of diabetes. Previous research has indicated that OBB can specifically bind to hemoglobin and significantly up-regulated the HO-1 expression in diabetic rat. Based on cellular protection features of HO-1, this work aimed to probe the anti-diabetic effect of OBB and the association with the potential induction of HO-1 expression. METHODS: A type 2 diabetic mellitus rat model was established. Glucolipid metabolism and insulin sensitivity were analyzed. Immunohistochemistry, Western blotting and in silico simulations were also performed. RESULTS: Administration of OBB or HO-1 inducer hemin significantly reduced fasting blood glucose level, blood fat, and inflammatory cytokine levels, while increased antioxidant capacity of pancreas. Meanwhile, OBB treatment remarkably stimulated liver glycogenesis and inhibited gluconeogenesis. Besides, OBB improved the glucose utilizing of muscle. Noteworthily, OBB inhibited the islet cell apoptosis and improved pancreatic function. In addition, OBB effectively improved the consumption of glucose in insulin-resistant HepG2 cells. Moreover, OBB also reduced oxidative stress, promoted glucose-elicited insulin secretion and enhanced expression of ß-cell function proteins in INS-1 cells. Nevertheless, these effects were significantly reversed by treatment with Zincprotoporphrin (ZnPP). Additionally, in silico simulations indicated that OBB exhibited superior affinity with HO-1. CONCLUSION: OBB effectively ameliorated hyperglycemia, dyslipidemia, and insulin resistance, improved oral glucose tolerance, and maintained glucose metabolism homeostasis, at least in part, by promoting HO-1-mediated activation of phosphoinositide 3-kinase / protein kinase B (PI3K/Akt) and AMP-activated protein kinase (AMPK) pathways. These data eloquently suggest that OBB, as a novel HO-1 agonist, has good potential to be a promising candidate drug for the management of diabetes, and support a therapeutic role of HO-1 induction in diabetes that potentially paves the way to translational research.


Assuntos
Diabetes Mellitus , Hipoglicemia , Resistência à Insulina , Animais , Diabetes Mellitus/tratamento farmacológico , Glucose/metabolismo , Heme Oxigenase-1/metabolismo , Hipoglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Resistência à Insulina/fisiologia , Fosfatidilinositol 3-Quinases , Ratos
6.
Artigo em Inglês | MEDLINE | ID: mdl-35069767

RESUMO

BACKGROUND: Clinical research found that TCM is therapeutic in treating gastric cancer. Clearing heat is the most common method, while some antirheumatic medicines are widely used in treatment as well. To explore the pharmacological mechanism, we researched the comparison between heat-clearing medicine and antirheumatic medicine in treating gastric cancer. METHODS: First, related ingredients and targets were searched, respectively, and are shown in an active ingredient-target network. Combining the relevant targets of gastric cancer, we constructed a PPI network and MCODE network. Then, GO and KEGG enrichment analyses were conducted. Molecular docking experiments were performed to verify the affinity of targets and ligands. Finally, we analyzed the tumor immune infiltration on gene expression, somatic CNA, and clinical outcome. RESULTS: A total of 31 ingredients and 90 targets of heat-clearing medicine, 31 ingredients and 186 targets of antirheumatic medicine, and 12,155 targets of gastric cancer were collected. Antirheumatic medicine ranked the top in all the enrichment analyses. In the KEGG pathway, both types of medicines were related to pathways in cancer. In the KEGG map, AR, MMP2, ERBB2, and TP53 were the most crucial targets. Key targets and ligands were docked with low binding energy. Analysis of tumor immune infiltration showed that the expressions of AR and ERBB2 were correlated with the abundance of immune infiltration and made a difference in clinical outcomes. CONCLUSIONS: Quercetin is an important ingredient in both heat-clearing medicine and antirheumatic medicine. AR signaling pathway exists in both types of medicines. The mechanism of the antitumor effect in antirheumatic medicine was similar to trastuzumab, a targeted drug aimed at ERBB2. Both types of medicines were significant in tumor immune infiltration. The immunology of gastric tumor deserves further research.

7.
Drug Des Devel Ther ; 15: 3241-3254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349501

RESUMO

PURPOSE: Berberine (BBR) is an active component of Phellodendri Cortex (PC), which is a traditional Chinese medicine that has been prescribed clinically for hyperuricemia (HUA) for hundreds of years. Many studies reported the anti-inflammatory and nephroprotective properties of BBR and PC; however, the therapeutic effects of BBR on HUA have not been explored. This study aims to investigate the efficacy and mechanism of BBR for treating HUA. METHODS: The mechanism of BBR in the treatment of HUA were predicted by network pharmacology. A mouse model of HUA established by potassium oxonate and hypoxanthine was used to verify the prediction. The levels of serum uric acid (UA), urea nitrogen (BUN) and creatinine (CRE) were determined by biochemical test kits. Hematoxylin and eosin staining of kidney tissues was used to observe the kidney damage. ELISA kits were applied to detect the levels of interleukin (IL)-1ß and IL-18 in serum and kidney tissues. Quantitative real-time PCR and Western blotting were adopted to analyze the expression of NLRP3, ASC, Caspase1, IL-1ß and URAT1. The expressions of URAT1 in the kidney tubules were visualized by immunohistochemical staining. Molecular docking was used to assess the interaction between URAT1 and BBR. RESULTS: The network pharmacology screened out 82 genes and several inflammation-related signaling pathways related to the anti-hyperuricemia effect of BBR. In the in vivo experiment, BBR substantially decreased the level of UA, BUN and CRE, and alleviated the kidney damage in mice with HUA. BBR reduced IL-1ß and IL-18, and downregulated expressions of NLRP3, ASC, Caspase1 and IL-1ß. BBR also inhibited expression of URAT1 and exhibited strong affinity with this target in silico docking. CONCLUSION: BBR exerts anti-HUA and nephroprotective effects via inhibiting activation of NLRP3 inflammasome and correcting the aberrant expression of URAT1 in kidney. BBR might be a novel therapeutic agent for treating HUA.


Assuntos
Berberina/uso terapêutico , Hiperuricemia/tratamento farmacológico , Nefropatias/tratamento farmacológico , Farmacologia em Rede , Animais , Berberina/farmacologia , Modelos Animais de Doenças , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Transportadores de Ânions Orgânicos/análise , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Ácido Úrico/sangue
8.
Phytomedicine ; 90: 153631, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34253428

RESUMO

BACKGROUND: As a chronic inflammatory disease, ulcerative colitis (UC) is relevant to a rising risk of colorectal cancer. Dihydroberberine (DHBB), a natural occurring isoquinoline alkaloid with various bioactivities, was found in many plants including Coptis chinensis Franch. (Ranunculaceae), Phellodendron chinense Schneid. (Rutaceae), and Chelidonium majus L. (Papaveraceae). However, its protective effect on UC is sparsely dissected out. PURPOSE: To explore the protective role and underlying mechanism of DHBB on a model of colitis. METHODS: Acute colitis model was established by gavage with 3% dextran sulfate sodium (DSS) for 8 days. Influence of DHBB on DSS-induced clinical symptoms and disease activity index (DAI) was monitored and analyzed. Pathological injury of colon tissues was examined by hematoxylin-eosin and Alcian blue staining. The expression of intestinal mucosal barrier function proteins, immune-inflammation related biomarkers and signal pathway key targets were determined by ELISA kit, Western blot, immunohistochemistry and qRT-PCR. RESULTS: DHBB treatment effectively alleviated DSS-induced UC by relieving clinical manifestations, DAI scores and pathological damage, which exerted similar beneficial effect to azathioprine (AZA), and better than berberine (BBR). In addition, DHBB significantly improved the gut barrier function through up-regulating the levels of tight junction proteins and mucins. Furthermore, DHBB dramatically ameliorated colonic immune-inflammation state, which was related to the decrease of colonic pro-inflammatory cytokines and immunoglobulin through blocking TLR4/MyD88/NF-κB signal pathway. CONCLUSION: These results demonstrated that DHBB exerted a significant protective effect on DSS-induced experimental UC, at least partly through suppressing immune-inflammatory response and maintaining gut barrier function.


Assuntos
Berberina , Colite Ulcerativa , Animais , Berberina/análogos & derivados , Berberina/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Isoquinolinas , Camundongos , Fator 88 de Diferenciação Mieloide , NF-kappa B , Compostos Fitoquímicos/farmacologia , Substâncias Protetoras/farmacologia , Transdução de Sinais , Receptor 4 Toll-Like
9.
Artigo em Inglês | MEDLINE | ID: mdl-33790976

RESUMO

BACKGROUND: Safflower injection (SFI), a popular Chinese patent drug, is commonly used to treat acute coronary syndromes (ACSs) in China. The research seeks to scientifically estimate the clinical efficacy of SFI for ACS patients. METHODS: Eight electronic databases were retrieved for eligible research from the founding date to September 8, 2020. Odds ratio (OR) was adopted to assess the total effective rate, ECG improvement, and adverse reaction, and mean difference (MD) was used for assessing the hemorheology indexes as well as the LVEF. RESULTS: Sixteen randomized controlled trials involving 1620 sufferers with ACS were incorporated. The outcomes showed that, in comparison to conventional medication alone, SFI combined with conventional treatment remarkably enhanced the total effective rate (OR = 3.66, 95% CI [2.73, 4.90], P < 0.00001), ECG improvement (OR = 2.85, 95% CI [2.04, 3.99], P < 0.00001), and LVEF (MD = 5.13, 95% CI [3.73, 6.53], P < 0.00001). Moreover, SFI combined with conventional treatment significantly decreased hemorheology indexes including BV (MD = -0.95, 95% CI [-1.76, -0.13], P=0.02), HCT (MD = -2.37, 95% CI [-3.25, -1.50], P < 0.00001), FIB (MD = -0.44, 95% CI [-0.60, -0.29], P < 0.00001), and PAR (OR = -7.65, 95% CI [-10.16, -5.14], P < 0.00001). However, no notable contrast was observed to link the experimental and the control team for PV (MD = -0.42, 95% CI [-0.83, 0.00], P=0.05) and adverse reactions (OR = 0.59, 95% CI [0.13, 2.74], P=0.50). CONCLUSION: Despite the limitations that existed in this meta-analysis, the outcomes demonstrated that SFI and conventional combined medication is an effective and relatively safe therapy for ACS sufferers.

10.
Phytomedicine ; 85: 153550, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33831691

RESUMO

BACKGROUND: Berberine (BBR) has been widely used to treat non-alcoholic fatty liver disease (NAFLD). The metabolites of BBR were believed to contribute significantly to its pharmacological effects. Oxyberberine (OBB), a gut microbiota-mediated oxidative metabolite of BBR, has been firstly identified in our recent work. PURPOSE: Here, we aimed to comparatively investigate the anti-NAFLD properties of OBB and BBR. METHODS: The anti-NAFLD effect was evaluated in high-fat diet-induced obese NAFLD rats with biochemical/ELISA tests and histological staining. The related gene and protein expressions were detected by qRT-PCR and Western blotting respectively. Molecular docking and dynamic simulation were also performed to provide further insight. RESULTS: Results indicated OBB remarkably and dose-dependently attenuated the clinical manifestations of NAFLD, which (100 mg/kg) achieved similar therapeutic effect to metformin (300 mg/kg) and was superior to BBR of the same dose. OBB significantly inhibited aberrant phosphorylation of IRS-1 and up-regulated the downstream protein expression and phosphorylation (PI3K, p-Akt/Akt and p-GSK-3ß/GSK-3ß) to improve hepatic insulin signal transduction. Meanwhile, OBB treatment remarkably alleviated inflammation via down-regulating the mRNA expression of MCP-1, Cd68, Nos2, Cd11c, while enhancing Arg1 mRNA expression in white adipose tissue. Moreover, OBB exhibited closer affinity with AMPK in silicon and superior hyperphosphorylation of AMPK in vivo, leading to increased ACC mRNA expression in liver and UCP-1 protein expression in adipose tissue. CONCLUSION: Taken together, compared with BBR, OBB was more capable of maintaining lipid homeostasis between liver and WAT via attenuating hepatic insulin pathway and adipocyte inflammation, which was associated with its property of superior AMPK activator.


Assuntos
Berberina/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Quinases Proteína-Quinases Ativadas por AMP , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Homeostase , Inflamação/tratamento farmacológico , Insulina/metabolismo , Fígado/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Obesidade , Oxirredução , Fosforilação , Proteínas Quinases/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
11.
Toxicology ; 451: 152680, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465425

RESUMO

Brusatol occurs as a characteristic bioactive principle of Brucea javanica (L.) Merr., a traditional medicinal herb frequently employed to tackle cancer in China. This work endeavored to unravel the potential anti-cancer activity and action mechanism of brusatol against non-small cell lung cancer (NSCLC) cell lines. The findings indicated that brusatol remarkably inhibited the growth of wild-type NSCLC cell lines (A549 and H1650) and epidermal growth factor receptor-mutant cell lines (PC9 and HCC827) in a dose- and time-related fashion, and profoundly inhibited the clonogenic capability and migratory capacity of PC9 cells. Treatment with brusatol resulted in significant apoptosis in PC9 cells, as evidenced by Hoechst 33342 staining and flow cytometric analysis. The apoptotic effect was closely related to induction of G0-G1 cell cycle arrest, stimulation of reactive oxygen species (ROS) and malondialdehyde, decrease of glutathione levels and disruption of mitochondrial membrane potential. Furthermore, pretreatment with N-acetylcysteine, a typical ROS scavenger, markedly ameliorated the brusatol-induced inhibition of PC9 cells. Western blotting assay indicated that brusatol pronouncedly suppressed the expression levels of mitochondrial apoptotic pathway-associated proteins Bcl-2 and Bcl-xl, accentuated the expression of Bax and Bak, and upregulated the protein expression of XIAP, cleaved caspase-3/pro caspase-3, cleaved caspase-8/pro caspase-8, and cleaved PARP/total PARP. In addition, brusatol significantly suppressed the expression of Nrf2 and HO-1, and abrogated tBHQ-induced Nrf2 activation. Combinational administration of brusatol with four chemotherapeutic agents exhibited marked synergetic effect on PC9 cells. Together, the inhibition of PC9 cells proliferation by brusatol might be intimately associated with the modulation of ROS-mediated mitochondrial-dependent pathway and inhibition of Nrf2-mediated antioxidant response. This novel insight might provide further evidence to buttress the antineoplastic efficacy of B. javanica, and support a role for brusatol as a promising anti-cancer candidate or adjuvant to current chemotherapeutic medication in the therapy of EGFR-mutant NSCLC.


Assuntos
Antioxidantes/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Quassinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Brucea , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores
12.
Biomed Pharmacother ; 134: 111122, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341052

RESUMO

Brucea javanica oil (BJO), one of the main products of Brucea javanica, has been widely used in treating different kinds of malignant tumors. Quassinoids are the major category of anticancer phytochemicals of B. javanica. However, current researches on the anti-cancer effect of BJO mainly focused on oleic acid and linoleic acid, the common major components of dietary edible oils, essential and characteristic components of B. javanica like quassinoids potentially involved remained unexplored. In the current investigation, we developed an efficient HPLC method to detect brusatol, a characteristic quassinoid, and comparatively scrutinized the anti-hepatocellular carcinoma (anti-HCC) effect of BJO, brusatol-free BJO (BF-BJO), and brusatol-enriched BJO (BE-BJO) against hepatoma 22 (H22) in mice. High-performance liquid chromatography (HPLC) was utilized to identify the components in BJO. BE-BJO was extracted with 95 % ethanol. The anti-tumor effect of BJO, BF-BJO and BE-BJO was comparatively investigated, and the potential underlying mechanism was explored in H22 ascites tumor-bearing mice. The results indicated that BJO and BE-BJO significantly prolonged the survival time of H22 ascites tumor-bearing mice, while BF-BJO exhibited no obvious effect. BJO and BE-BJO exhibited pronounced anti-HCC activity by suppressing the growth of implanted hepatoma H22 in mice, including ascending weight, abdominal circumference, ascites volume and cancer cell viability, with a relatively wide margin of safety. BJO and BE-BJO significantly induced H22 cell apoptosis by upregulating the miRNA-29b gene level and p53 expression. Furthermore, BJO and BE-BJO treatment substantially downregulated Bcl-2 and mitochondrial Cytochrome C protein expression, and upregulated expression levels of Bax, Bad, cytosol Cytochrome C, caspase-3 (cleaved), caspase­9 (cleaved), PARP and PARP (cleaved) to induce H22 cells apoptosis. Brusatol was detected in BJO and found to be one of its major active anti-HCC components, rather than fatty acids including oleic acid and linoleic acid. The anti-HCC effect of BJO and BE-BJO was intimately associated with the activation of miRNA-29b, p53-associated apoptosis and mitochondrial-related pathways. Our study gained novel insight into the material basis of BJO in the treatment of HCC, and laid a foundation for a novel specific standard for the quality evaluation of BJO and its commercial products in terms of its anti-cancer application.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Brucea , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Óleos de Plantas/farmacologia , Quassinas/farmacologia , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Brucea/química , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Óleos de Plantas/isolamento & purificação , Quassinas/isolamento & purificação , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-33281912

RESUMO

OBJECTIVE: Compound Danshen dripping pill (CDDP) is a well-known Chinese patent medicine, which is commonly used for the treatment of coronary heart disease (CHD) in China. This study is aimed at systematically assessing the clinical efficacy of CDDP for CHD patients. METHODS: Eight databases were retrieved for eligible research studies from the founding date to April 20, 2020. Risk ratio (RR) was used to assess major adverse cardiac events (MACE) and adverse reactions, and mean difference (MD) was adopted to evaluate the hemorheology and blood lipid indexes, vascular endothelial function, cardiac function, and inflammation. RESULT: Twenty randomized controlled trials involving 2574 participants with CHD were included. The results indicated that, compared with percutaneous coronary intervention (PCI) alone, the combination of CDDP with PCI treatment remarkably reduced MACE (RR = 0.53, 95% confidence interval (CI) (0.44, 0.65), P < 0.00001). Moreover, hemorheology and blood lipid parameters and inflammatory mediators of CHD patients were also dramatically mitigated after the combined therapy (P < 0.01). In addition, vascular endothelial function and cardiac function were prominently improved by this combination (P < 0.001). However, there was no significant difference in adverse reactions between the two groups (P > 0.05). CONCLUSION: Evidence from the meta-analysis demonstrated that CDDP combined with PCI treatment prominently reduced the incidence of MACE, improved cardiovascular functions, and inhibited inflammation in CHD patients. Therefore, CDDP combined with PCI treatment could be an effective and safe therapeutic method for CHD patients.

14.
Pharmacol Res ; 152: 104603, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31863867

RESUMO

Berberine (BBR), a naturally-occurring isoquinoline alkaloid isolated from several Chinese herbal medicines, has been widely used for the treatment of dysentery and colitis. However, its blood concentration was less than 1 %, and intestinal microflora-mediated metabolites of BBR were considered to be the important material basis for the bioactivities of BBR. Here, we investigated the anti-colitis activity and potential mechanism of oxyberberine (OBB), a novel gut microbiota metabolite of BBR, in DSS-induced colitis mice. Balb/C mice treated with 3 % DSS in drinking water to induce acute colitis were orally administrated with OBB once daily for 8 days. Clinical symptoms were analyzed, and biological samples were collected for microscopic, immune-inflammation, intestinal barrier function, and gut microbiota analysis. Results showed that OBB significantly attenuated DSS-induced clinical manifestations, colon shortening and histological injury in the mice with colitis, which achieved similar therapeutic effect to azathioprine (AZA) and was superior to BBR. Furthermore, OBB remarkably ameliorated colonic inflammatory response and intestinal epithelial barrier dysfunction. OBB appreciably inhibited TLR4-MyD88-NF-κB signaling pathway through down-regulating the protein expressions of TLR4 and MyD88, inhibiting the phosphorylation of IκBα, and the translocation of NF-κB p65 from cytoplasm to nucleus. Moreover, OBB markedly modulated the gut dysbiosis induced by DSS and restored the dysbacteria to normal level. Taken together, the result for the first time revealed that OBB effectively improved DSS-induced experimental colitis, at least partly through maintaining the colonic integrity, inhibiting inflammation response, and modulating gut microflora profile.


Assuntos
Anti-Inflamatórios/uso terapêutico , Berberina/análogos & derivados , Berberina/uso terapêutico , Colite/tratamento farmacológico , Microbioma Gastrointestinal/fisiologia , Animais , Anti-Inflamatórios/farmacologia , Berberina/farmacologia , Biotransformação , Ceco/microbiologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana , Masculino , Camundongos Endogâmicos BALB C , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
15.
Phytomedicine ; 52: 272-283, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30599908

RESUMO

BACKGROUND: Berberine (BBR) is the most abundant and major active constituent of Rhizoma Coptidis (RC), which has been widely used to treat inflammatory diseases in traditional oriental medicine. Despite BBR has been found to exhibit pronounced anti-inflammatory effect, the anti-inflammatory activities of its natural derivatives were sparsely dissected out. PURPOSE: To comparatively investigate the anti-inflammatory potential of BBR, and its natural oxoderivative (oxyberberine, OBB) and reduced derivative (dihydroberberine, DHBB) in vitro and in vivo, and delineate the possible underlying mechanism. METHODS: LC-MS/MS was used to identify the natural derivatives of BBR in RC. The potential anti-inflammatory properties of BBR and its natural derivatives were comparatively evaluated in vitro by lipopolysaccharide (LPS)-induced RAW264.7 macrophages cells, and in vivo via three typical acute inflammation murine models. Some important inflammation-related molecules were analyzed by ELISA, qRT-PCR and Western blotting. RESULTS: LC-MS/MS led to the identification of BBR, OBB and DHBB in RC ethyl acetate extract. The in vitro assay indicated that BBR, OBB and DHBB (1.25, 2.5 and 5 µM) pretreatment significantly decreased the levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), prostaglandinE2 (PGE2) and nitricoxide (NO), and inhibited the mRNA expressions of cyclooxygenase-2 (COX-2) and inducible nitricoxide synthase (iNOS) in a dose-dependent manner, with relative efficiency of OBB > BBR > DHBB. Furthermore, OBB, BBR and DHBB remarkably inhibited the phosphorylation of nuclear factor-κB (NF-κB) p65 and inhibitory kappa Bα (IκBα). In vivo, BBR (20 mg/kg) and OBB (5, 10, and 20 mg/kg) pretreatment significantly ameliorated the xylene-induced ear edema, carrageenan-stimulated paw edema, and acetic acid-elicited vascular permeability in mice in a dose-dependent manner, with OBB exhibiting superior anti-inflammatory effect at the same dose (20 mg/kg). Histopathological analysis indicated that OBB and BBR could markedly attenuate the inflammatory deterioration and decrease the cellular infiltration in paw tissues. Additionally, the carrageenan-induced increases in TNF-α, IL-6, IL-1ß, PGE2 and NO productions, and COX-2 and iNOS mRNA expressions were effectually and concentration-dependently suppressed by OBB and BBR pretreatment. CONCLUSION: The anti-inflammatory activity of BBR and its natural derivatives was in the order of OBB > BBR > DHBB. OBB was for the first time found to be endowed with pronounced anti-inflammatory property, which was probably associated with suppressing the activation of NF-κB signaling pathway, and the subsequent gene expressions and productions of pro-inflammatory mediators. The results might contribute to illuminating the pharmacodynamic underpinnings of RC and provide evidence for developing OBB as a safe and promising natural lead compound in inflammation treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Berberina/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Animais , Berberina/análogos & derivados , Carragenina/efeitos adversos , Coptis chinensis , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Edema/induzido quimicamente , Edema/tratamento farmacológico , Feminino , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Front Pharmacol ; 10: 1602, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32116661

RESUMO

Bruguiera gymnorrhiza (BG), a medicinal mangrove, and its fruit (a food material) (BGF), have traditionally been used to treat diarrhea (also known as ulcerative colitis) in folk medicine. However, the mechanism of action against colitis remains ambiguous. This study aimed to investigate the potential efficacy and mechanism of BGF on experimental colitis. Colitis was induced by oral intake of dextran sulfate sodium (DSS) and treated with aqueous extract of BGF (25, 50 and 100 mg/kg) for a week. The Disease Activity Index (DAI), colon length, and histological changes of colon were analyzed. The inflammatory and oxidative stress status was explored. The protein expression of Nrf2 and Keap1 in the colon was detected by Western blotting. The mRNA expression of Nrf2 downstream genes (GCLC, GCLM, HO-1 and NQO1) was determined by RT-PCR. Furthermore, the effect on intestinal flora was analyzed. Results indicated that BGF was rich in pinitol, and showed strong antioxidative activity in vitro. Compared with the DSS model, BGF effectively reduced the body weight loss and DAI, restored the colon length, repaired colonic pathological variations, and decreased the histological scores, which was superior to salicylazosulfapyridine (SASP) with smaller dosage. Moreover, BGF not only abated the levels of MDA and inflammatory mediators (TNF-α, IL-6, IL-1ß, and IFN-γ), increased the level of IL-10, but also prevented the depletion of SOD and GSH. BGF upregulated the protein level of nuclear Nrf2 and mRNA levels of GCLC, GCLM, HO-1 and NQO1, while significantly inhibited the protein expression of Keap1 and cytosolic Nrf2. Besides, BGF promoted the growth of probiotics (Bifidobacterium, Anaerotruncus, and Lactobacillus) in the gut, and inhibited the colonization of pathogenic bacteria (Bacteroides and Streptococcus), which contributed to the maintenance of intestinal homeostasis. BGF possessed protective effect against DSS-induced colitis. The potential mechanism of BGF may involve the amelioration of inflammatory and oxidative status, activation of Keap1/Nrf2 signaling pathway, and maintenance of micro-ecological balance of the host. This study provides experimental evidence for the traditional application of BGF in the treatment of diarrhea, and indicates that BGF may be a promising candidate against colitis.

17.
J Med Food ; 21(9): 887-898, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30109956

RESUMO

Angelica sinensis (AS, Danggui in Chinese) is an important herbal component of various traditional formulae for the management of asthenia and its tonic effects. Although AS has been shown to ameliorate cognitive damage and nerve toxicity in D-galactose (D-gal)-elicited senescent mice brain, its effects on liver and kidney injury have not yet been explored. In this work, mice were subjected to hypodermic injection with D-gal (200 mg/kg) and orally gavaged with AS (20, 40, or 80 mg/kg) once a day for 8 successive weeks. Results revealed that AS significantly improved liver and kidney function as assessed by organ index and functional parameters. In addition, AS pretreatment effectively ameliorated the histological deterioration. AS attenuated the MDA level and markedly enhanced the activities and gene expressions of antioxidative enzymes, namely Cu, Zn-SOD, CAT, and GPx. Furthermore, AS markedly inhibited the D-gal-mediated increment of expressions of inflammatory cytokines iNOS, COX-2, IκBα, p-IκBα, and p65 and promoted the IκBα expression level in both hepatic and renal tissues. In sum, AS pretreatment could effectively guard the liver and kidney of mice from D-gal-induced injury, and the underlying mechanism was deemed to be intimately related to attenuating oxidative response and inflammatory stress.


Assuntos
Angelica sinensis/química , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Galactose/efeitos adversos , Inflamação/tratamento farmacológico , Nefropatias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Cromatografia com Fluido Supercrítico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Humanos , Inflamação/genética , Inflamação/metabolismo , Rim/efeitos dos fármacos , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Fígado/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Camundongos
18.
Trials ; 19(1): 367, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29996882

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) is a chronic, recurring condition, prevalent in the general population. Current medication treatments usually leave patients undertreated. Nowadays, Chinese medicine (CM) is being considered as a promising treatment approach for IBS. However, due to methodological limitations, there is no strong evidence to support CM. Although IBS relapses are common, the relapse assessment has always been neglected in CM study designs. Meanwhile, in clinical practice and studies, it has been found that certain CM formulas can only benefit certain kinds of patients. Discovering what population and illness characteristics likely respond to outcomes may help improve the effectiveness of CM. The aims of this study are to evaluate the efficacy and safety of Tiao-Chang Ke-Min (TCKM) granules for IBS, especially in reducing IBS symptoms' relapse, by a high-quality randomized controlled trial and then to optimize the indication of the TCKM granules. METHODS/DESIGN: This is a parallel-group, randomized, double-blind, placebo-controlled trial embedded with outcome predictive factors. Eligible patients with diarrhea-predominant IBS will be randomized into either a TCKM granule group or a placebo group. Patients from both groups will receive health education. The treatment duration is 4 weeks and the follow-up is 12 weeks. The primary outcome is global improvement measured with adequate relief (AR). The second outcome measures include time until relief, time until first relapse, total relapse times, long-term effectiveness, individual symptoms, IBS-Symptom Severity Score (IBS-SSS), IBS-Quality of Life Questionnaire (IBS-QOL), and Hospital Anxiety and Depression Scale (HADS). Predictive factors associated with patient and illness characteristics have been widely collected. These factors will be embedded in this trial for further identification. DISCUSSION: This trial may provide high-quality evidence on the efficacy and safety of TCKM granules for IBS and a more accurate indication. Importantly, this trial will provide a new research method for improving the therapeutic effects of CM for clinicians and researchers. To address IBS relapse assessment, a series of special definitions of relapse incidents has been made for this trial. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ID: ChiCTR-IOR-17010600 . Registered on 9 February 2017.


Assuntos
Diarreia/tratamento farmacológico , Síndrome do Intestino Irritável/tratamento farmacológico , Medicina Tradicional Chinesa , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto , Idoso , Método Duplo-Cego , Feminino , Humanos , Síndrome do Intestino Irritável/psicologia , Masculino , Medicina Tradicional Chinesa/efeitos adversos , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Garantia da Qualidade dos Cuidados de Saúde , Qualidade de Vida , Projetos de Pesquisa , Índice de Gravidade de Doença
19.
Food Funct ; 9(4): 2005-2014, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29616245

RESUMO

The biological activity of curcumin (CUR), a promising naturally occurring dietary compound for the treatment of hepatocellular carcinoma (HCC), was closely associated with its metabolite. Octahydrocurcumin (OHC) is the final hydrogenated metabolite of CUR and has been reported to have potential biological activities. However, difficulties in access have hampered its biological studies. In the current investigation, we designed an efficient synthesis method to produce OHC, and comparatively explored the anti-cancer effect and potential mechanism of OHC and CUR in an H22 ascites tumor-bearing mice model. The results indicated that OHC had a relatively wide margin of safety, and exhibited superior effects to CUR in suppressing the tumor growth, including ascending weight, abdominal circumference, ascites volume and cancer cell viability. OHC significantly induced H22 cell apoptosis by upregulating the p53 expression and downregulating the MDM2 expression. OHC also remarkably decreased the Bcl-2 and Bcl-xl protein expressions, and increased the Bax and Bad expressions in ascitic cells. Furthermore, THC substantially induced the release of cytochrome C, caspase-3, caspase-9 and the cleavage of PARP to induce H22 cell apoptosis. Taken together, OHC was more effective than CUR in suppressing H22-induced HCC through the activation of the mitochondrial apoptosis pathway. OHC may thus be a promising anti-HCC agent.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Apoptose , Carcinoma Hepatocelular/dietoterapia , Curcumina/análogos & derivados , Neoplasias Hepáticas Experimentais/dietoterapia , Animais , Animais não Endogâmicos , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/metabolismo , Proteínas Reguladoras de Apoptose/agonistas , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Curcumina/síntese química , Curcumina/metabolismo , Curcumina/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Hidrogenação , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Distribuição Aleatória , Análise de Sobrevida , Carga Tumoral , Proteína Supressora de Tumor p53/agonistas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Drug Deliv ; 24(1): 1667-1679, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29078713

RESUMO

Brusatol (BR) is one of the main bioactive components derived from Brucea javanica, a medicinal herb historically used in the treatment of dysenteric disorders (also known as ulcerative colitis(UC)). Due to its poor aqueous solubility, a novel brusatol self-microemulsifying drug delivery system (BR-SMEDDS) nanoformulation with smaller size, higher negative zeta potential and drug content, and excellent stability was developed. The appearance of BR-SMEDDS remained clear and transparent, and transmission electron microscopy showed microemulsion droplets to be spherical with homogeneous distribution. Pharmacokinetic parameters indicated that oral bioavailability was greatly improved by BR-SMEDDS as compared with aqueous suspension. Meanwhile, the anti-colitis activity of BR-SMEDDS was evaluated on dextran sodium sulfate (DSS)-induced colitis mice model. The result illustrated that the nano-formation significantly reduced the body weight loss, recovered colon length, decreased disease activity index and microscopic score, regulated immune-inflammatory cytokines, diminished oxidative stress and repressed the colonic expression of myeloid differentiation factor 88 (MyD88), toll-like receptor 4 (TLR4) and nuclear factor kappa B p65 (NF-κB p65) proteins. Our findings demonstrated for the first time that BR could effectively attenuate colonic inflammation in mice, at least partially, via favorable regulation of anti-oxidative and anti-inflammatory status and inhibition of the TLR4-linked NF-κB signaling pathway. The BR nano-formulation was superior to BR suspension and sulphasalazine, in treating experimental UC, and exhibited similar effect with azathioprine, with much smaller dosage. The enhanced anti-UC effect of BR might be intimately associated with the improved pharmacokinetic property by SMEDDS. The developed nano-delivery system might thus be a promising candidate for colitis treatment.


Assuntos
Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Sulfato de Dextrana/farmacologia , Quassinas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Química Farmacêutica/métodos , Colite Ulcerativa/metabolismo , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA