Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Inflamm Res ; 16: 6329-6348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152570

RESUMO

Purpose: Neuroinflammation is a significant etiological factor in the development of depression. Traditional Chinese medicine (TCM) has demonstrated notable efficacy in the treatment of inflammation. Our previous study surfaces that the active fraction of Polyrhachis vicina Roger (AFPR) has antidepressant and anti-neuroinflammatory effects, but the specific mechanisms remain to be elucidated. The objective of this study was to examine the impact of AFPR on inflammation in depression via the FTO/miR-221-3p/SOCS1 axis. Methods: Chronic unpredictable stress (CUMS)-induced rats and LPS-induced BV2 cells were employed to simulate depression models in vivo and in vitro. The levels of inflammatory factors were detected using the ELISA assay. The expression of genes and proteins was detected using qRT-PCR and Western blot. Gene interactions were detected using the dual luciferase reporter gene. Protein-RNA interactions were investigated using RNA methylation immunoprecipitation (MeRIP) and RNA immunoprecipitation (RIP). Neuroinflammation in the brain was examined through H&E staining, while neuronal apoptosis was assessed using TUNEL staining. Results: The results showed that AFPR ameliorated depression induced inflammation by increasing SOCS1 expression. However, SOCS1 was identified as a target of miR-221-3p. Overexpression of miR-221-3p decreased the expression of SOCS1 and increased the levels of NF-κB, IL-7, and IL-6. In addition, we found that miR-221-3p was regulated by FTO-mediated m6A modification through MeRIP and RIP experiments. Interference with miR-221-3p and overexpression of FTO resulted in increased SOCS1 gene expression and decreased levels of NF-κB, IL-7, and IL-6, which were reversed by AFPR. Conclusion: AFPR inhibits the maturation of pri-miR-221-3p through FTO-mediated m6A modification, reduces the production of miR-221-3p, increases the expression of SOCS1, and reduces the level of inflammation, thereby improving depressive symptoms.

2.
Phytomedicine ; 121: 155104, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797433

RESUMO

BACKGROUND: Damaged mitophagy and impaired angiogenesis involve in the pathogenic development of ischemic stroke. Active fraction of Polyrhachis vicina (Roger) (AFPR) showed great potential on neurological disease with it's remarkable anti-inflammatory and anti-oxidative effects. PURPOSE: This study designed to clarify the correlation between Pink1/Parkin-mediated mitophagy and angiogenesis after stroke, and to elucidate the role of SIRT3 in regulating mitophagy and angiogenesis, and to address the mechanism of AFPR on promoting mitophagy and angiogenesis in microvessels endothelium of ischemic brain. STUDY DESIGN: A cerebral ischemia/reperfusion (CIR) rat model was developed by middle cerebral artery occlusion procedure. bEnd.3 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic CIR process. Neurological function, mitophagy and angiogenesis related indicators were measured. SIRT3 siRNA and 3-MA were used to verify the interaction between SIRT3-mediated mitophagy and angiogenesis. METHODS: CIR rats were orally treated with AFPR (8 and 4 g raw drug /kg) and Nimodipine (10.8 mg/kg) for 12 days to mimic the recovery phase post-stroke. The neurological function assessment, TTC staining, HE staining, TUNEL staining and Nissl staining were performed to assess neuroprotective effects of AFPR against CIR. Then CD31-labeled microvessel density in brain was visualized and quantified by immunofluorescence staining. Mitochondrial ultrastructure was assessed by transmission electron microscope scanning. Expressions of relative proteins,e.g. SIRT3, Pink1, Parkin, LC3-II, p62, VEGFA, involving in mitophagy and angiogenesis, were detected by Western blotting analysis. In vitro, bEnd.3 cells were cultured with AFPR or in combination of autophagy inhibitor 3-MA during the reoxygenation. Then cell viability, and LDH releasing were measured. Angiogenic indicators,such as migration and tube formation activity, VEGFA level were determined. To assess effects of AFPR on mitophagy, mitophagy-related proteins were detected, as well as the autophagosome engulfment and lysosome degradation of mitochondria. To address the role of SIRT3, deacetylation activity of SIRT3 was validated by detecting acetylated FOXO3A level with co-immunoprecipitation (Co-IP) assay. Pre-treatment of siRNA or combination use of 3-MA were used to verify the detailed mechanism. RESULTS: AFPR remarkably reduced neurological scores and infarct size, alleviated neuron apoptosis in cortex, and increased Nissl density in hippocampus of CIR rats. In addition, AFPR significantly promoted angiogenesis by increasing microvessels density and VEGFA expressions, increased SIRT3 expression, and activated Pink1/Parkin mediated mitophagy. In bEnd.3 cells, the combination use of 3-MA and AFPR further demonstrated that AFPR might promote angiogenesis after OGD/R injury through activating Pink1/Parkin mediated mitophagy. Co-IP assay suggested AFPR reduced acetylated FOXO3A level. This might be correlated with an elevation of SIRT3 expression and it's deacetylation activity. SIRT3 siRNA pretreatment significantly abolished the activation of mitophagy through Pink1/Parkin axis, eventually inhibited angiogenesis. CONCLUSION: AFPR promoted angiogenesis through activating mitophagy after cerebral ischemia reperfusion, which might partially involved in the amelioration of SIRT3-mediated regulation on Pink1/Parkin axis. Our study will shed new light on the role of SIRT3 in ischemic brain, especially in regulating mitophagy and angiogenesis after stroke.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Sirtuína 3 , Ratos , Camundongos , Animais , Mitofagia , Ratos Sprague-Dawley , Células Endoteliais/metabolismo , Isquemia Encefálica/patologia , Traumatismo por Reperfusão/metabolismo , Oxigênio , Ubiquitina-Proteína Ligases/metabolismo , Infarto Cerebral , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/farmacologia
3.
J Ethnopharmacol ; 312: 116454, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37059246

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polyrhachis vicina Roger (P. vicina), a traditional Chinese medicinal animal, has been used to treat rheumatoid arthritis, hepatitis, cancer, and other conditions. Due to its anti-inflammatory properties, our previous pharmacological investigations have demonstrated that it is effective against cancer, depression, and hyperuricemia. Nevertheless, the key active components and targets of P. vicina in cancers are still unexplored. AIM OF THE STUDY: The study aimed to evaluate the pharmacological treatment mechanism of the active fraction of P. vicina (AFPR) in treating colorectal cancer (CRC) and to further reveal its active ingredients and key targets. METHODS: To examine the inhibitory impact of AFPR on CRC growth, tumorigenesis assays, cck-8 assays, colony formation assays, and MMP detection were utilized. The primary components of AFPR were identified by GC-MS analysis. The network pharmacology, molecular docking, qRT-PCR, western blotting, CCK-8 assays, colony formation assay, Hoechst staining, Annexin V-FITC/PI double staining, and MMP detection were performed to pick out the active ingredients and potential key targets of AFPR. The function of Elaidic acid on necroptosis was investigated through siRNA interference and the utilization of inhibitors. Elaidic acid's effectiveness to suppress CRC growth in vivo was assessed using a tumorigenesis experiment. RESULTS: Studies confirmed that AFPR prevented CRC from growing and evoked cell death. Elaidic acid was the main bioactive ingredient in AFPR that targeted ERK. Elaidic acid greatly affected the ability of SW116 cells to form colonies, produce MMP, and undergo necroptosis. Additionally, Elaidic acid promoted necroptosis predominantly by activating ERK/RIPK1/RIPK3/MLKL. CONCLUSION: According to our findings, Elaidic acid is the main active component of AFPR, which induced necroptosis in CRC through the activation of ERK. It represents a promising alternative therapeutic option for CRC. This work provided experimental support for the therapeutic application of P. vicina Roger in the treatment of CRC.


Assuntos
Neoplasias Colorretais , Necroptose , Animais , Simulação de Acoplamento Molecular , Sincalida , Neoplasias Colorretais/tratamento farmacológico , Carcinogênese
4.
Drug Des Devel Ther ; 17: 717-735, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923105

RESUMO

Purpose: To investigate the mechanisms of antidepressant action of active fraction of Polyrhachis vicina Rogers (AFPR) through network pharmacology, molecular docking and experimental validation. Methods: GC-MS was used to predict chemical compounds, corresponding databases were used to predict chemical compound targets and depression targets, Cytoscape software was used to construct and analyze the protein interaction network map, DAVID database was used to analyze gene ontology (GO) and KEGG signaling pathway, and AGFR software was used to perform molecular docking. Subsequently, the underlying action mechanisms of AFPR on depression predicted by network pharmacology analyses were experimentally validated in a CORT-induced depression model in vitro and in vivo. Results: A total of 52 potential targets of AFPR on antidepressant were obtained. GO is mainly related to chemical synaptic transmission, signal transduction and others. KEGG signaling pathways are mainly related to cAMP signaling pathway and C-type lectin receptor signaling pathway. The experiment results showed that AFPR significantly increased the expression of PRKACA, CREB and BDNF in mouse brain tissue and PC12 cells. Furthermore, after interfered of cAMP in PC12 cells, the decreased expression of PRKACA, CREB and BDNF was reversed by AFPR. Conclusion: AFPR may exert antidepressant effects through multiple components, targets and pathways. Furthermore, it could improve neuroplasticity via the cAMP signaling pathway to improve depression-like symptoms.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Medicamentos de Ervas Chinesas , Ratos , Animais , Camundongos , Simulação de Acoplamento Molecular , Depressão/tratamento farmacológico , Farmacologia em Rede , Mapas de Interação de Proteínas , Medicina Tradicional Chinesa
5.
Neurochem Res ; 47(12): 3761-3776, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36222958

RESUMO

Depression has become an important disease threatening human health. In recent years, the efficacy of Traditional Chinese Medicine (TCM) in treating the disease has become increasingly prominent, so it is meaningful to find new antidepressant TCM. Mahonia fortune (Lindl.) Fedde is a primary drug in traditional formulas for the treatment of depression, and alkaloids are the main components of it. However, the detailed mechanism of Mahonia alkaloids (MA) on depression remains unclear. This study aimed to investigate the effect of MA on gap junction function in depression via the miR-205/Cx43 axis. The antidepressant effects of MA were observed by a rat model of reserpine-induced depression and a model of corticosterone (CORT)-induced astrocytes. The concentrations of neurotransmitters were measured by ELISA, the expression of Connexin 43 (Cx43) protein was measured by Immunohistochemistry and western-blot, brain derived neurotrophic factor (BDNF), cAMP-response element binding protein (CREB) proteins were measured by western-blot, the pathological changes of prefrontal cortex were observed by hematoxylin-eosin (H&E) staining. Luciferase reporter assay was performed to verify the binding of miR-205 and Cx43. The regulation effect of Cx43 on CREB was verified by interference experiment. Gap junction dysfunction was detected by fluorescent yellow staining. The results confirmed that MA remarkably decreased miR-205 expression and increased Cx43, BDNF, CREB expression in depression rat and CORT-induced astrocytes. In addition, after overexpression of miR-205 in vitro, the decreased expression of Cx43, BDNF and CREB could be reversed by MA. Moreover, after interfering with Cx43, the decreased expression of CREB and BDNF could be reversed by MA. Thus, MA may ameliorate depressive behavior through CREB/BDNF pathway regulated by miR-205/Cx43 axis.


Assuntos
Alcaloides , Conexina 43 , Junções Comunicantes , Mahonia , MicroRNAs , Animais , Ratos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Conexina 43/metabolismo , Corticosterona , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/metabolismo , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Hipocampo/metabolismo , Mahonia/química , MicroRNAs/metabolismo , Reserpina , Alcaloides/farmacologia , Alcaloides/uso terapêutico
6.
Biomed Pharmacother ; 117: 109141, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31228800

RESUMO

Millettia pulchra Kurz var-laxior (Dunn) Z. Wei, a wild-growing plant of the family Fabaceae is known to possess multifarious medicinal properties. 17-Methoxyl-7-hydroxy-benzene-furanchalcone (MHBFC) is a flavonoid monomer extracted from its root, which has been used in traditional Chinese medicine, with a long history as a remedy of hypertension and cardiovascular remodeling. The present study was conducted to further investigate the regulatory mechanisms of MHBFC based on the endothelial nitric oxide synthase-nitric oxide (eNOS-NO) signaling pathway. The abdominal aorta of the male Sprague-Dawley rats was narrowed to induce cardiac remodeling, and the rats were given corresponding drugs for 6 weeks after operation. At the end of the experiment, the relevant indexes were detected. The results showed that Nω-nitro-L-arginine methyl ester (L-NAME) could increase the myocardial cell cross-section area, myocardial fibrosis, and the cardiac collagen volume fraction. The serum NO and eNOS levels and the expression of p-eNOS, p-PI3K and p-Akt protein were decreased, and myocardial microvascular endothelial cell (MMVEC) apoptosis increased. However, the above changes were reversed after treatment with MHBFC. These results indicated that MHBFC could increase eNOS protein phosphorylation by increasing PI3K and Akt protein phosphorylation, and activated the eNOS-NO signaling pathway, increased eNOS enzyme activity, catalyzed the generation of protective NO, and counteracted MMVEC apoptosis induced by cardiac remodeling, thereby protecting against myocardial damage and reversing cardiac remodeling.


Assuntos
Chalconas/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Remodelação Ventricular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Células Endoteliais/ultraestrutura , Fibrose , Masculino , Microvasos/patologia , Miocárdio/patologia , Miocárdio/ultraestrutura , Óxido Nítrico/sangue , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA