Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Invest ; 127(6): 2295-2309, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28463228

RESUMO

Consciousness can be defined by two major attributes: awareness of environment and self, and arousal, which reflects the level of awareness. The return of arousal after general anesthesia presents an experimental tool for probing the neural mechanisms that control consciousness. Here we have identified that systemic or intracerebral injection of the cannabinoid CB1 receptor (CB1R) antagonist AM281 into the dorsomedial nucleus of the hypothalamus (DMH) - but not the adjacent perifornical area (Pef) or the ventrolateral preoptic nucleus of the hypothalamus (VLPO) - accelerates arousal in mice recovering from general anesthesia. Anesthetics selectively activated endocannabinoid (eCB) signaling at DMH glutamatergic but not GABAergic synapses, leading to suppression of both glutamatergic DMH-Pef and GABAergic DMH-VLPO projections. Deletion of CB1R from widespread cerebral cortical or prefrontal cortical (PFC) glutamatergic neurons, including those innervating the DMH, mimicked the arousal-accelerating effects of AM281. In contrast, CB1R deletion from brain GABAergic neurons or hypothalamic glutamatergic neurons did not affect recovery time from anesthesia. Inactivation of PFC-DMH, DMH-VLPO, or DMH-Pef projections blocked AM281-accelerated arousal, whereas activation of these projections mimicked the effects of AM281. We propose that decreased eCB signaling at glutamatergic terminals of the PFC-DMH projection accelerates arousal from general anesthesia through enhancement of the excitatory DMH-Pef projection, the inhibitory DMH-VLPO projection, or both.


Assuntos
Endocanabinoides/fisiologia , Hipotálamo/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Transmissão Sináptica , Anestesia Geral , Animais , Nível de Alerta , Neurônios GABAérgicos/fisiologia , Hipotálamo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Morfolinas/farmacologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Pirazóis/farmacologia , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores
2.
Sci Rep ; 6: 37251, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853254

RESUMO

Tissue injury is known to produce inflammation and pain. Synaptic potentiation between peripheral nociceptors and spinal lamina I neurons has been proposed to serve as a trigger for chronic inflammatory pain. Gastrodin is a main bioactive constituent of the traditional Chinese herbal medicine Gastrodia elata Blume, which has been widely used as an analgesic since ancient times. However, its underlying cellular mechanisms have remained elusive. The present study demonstrated for the first time that gastrodin exhibits an analgesic effect at the spinal level on spontaneous pain, mechanical and thermal pain hypersensitivity induced by peripheral inflammation, which is not dependent on opioid receptors and without tolerance. This analgesia by gastrodin is at least in part mediated by depressing spinal synaptic potentiation via blockade of acid-sensing ion channels. Further studies with miniature EPSCs and paired-pulse ratio analysis revealed the presynaptic origin of the action of gastrodin, which involves a decrease in transmitter release probability. In contrast, neither basal nociception nor basal synaptic transmission was altered. This study revealed a dramatic analgesic action of gastrodin on inflammatory pain and uncovered a novel spinal mechanism that could underlie the analgesia by gastrodin, pointing the way to a new analgesic for treating chronic inflammatory pain.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Analgesia/métodos , Álcoois Benzílicos/farmacologia , Dor Crônica , Glucosídeos/farmacologia , Coluna Vertebral/metabolismo , Potenciais Sinápticos/efeitos dos fármacos , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Dor Crônica/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Coluna Vertebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA