Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1301033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077360

RESUMO

Glutamine has been used to improve intestinal development and immunity in fish. We previously found that dietary glutamine enhances growth and alleviates enteritis in juvenile hybrid groupers (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). This study aimed to further reveal the protective role of glutamine on glycinin-induced enteritis by integrating transcriptome, proteome, and microRNA analyses. Three isonitrogenous and isolipidic trial diets were formulated: a diet containing 10% glycinin (11S group), 10% glycinin diet supplemented with 2% alanine-glutamine (Gln group), and a diet containing neither glycinin nor alanine-glutamine (fishmeal, FM group). Each experimental diet was fed to triplicate hybrid grouper groups for 8 weeks. The analysis of intestinal transcriptomic and proteomics revealed a total of 570 differentially expressed genes (DEGs) and 169 differentially expressed proteins (DEPs) in the 11S and FM comparison group. Similarly, a total of 626 DEGs and 165 DEPs were identified in the Gln and 11S comparison group. Integration of transcriptome and proteome showed that 117 DEGs showed consistent expression patterns at both the transcriptional and translational levels in the Gln and 11S comparison group. These DEGs showed significant enrichment in pathways associated with intestinal epithelial barrier function, such as extracellular matrix (ECM)-receptor interaction, tight junction, and cell adhesion molecules (P < 0.05). Further, the expression levels of genes (myosin-11, cortactin, tenascin, major histocompatibility complex class I and II) related to these pathways above were significantly upregulated at both the transcriptional and translational levels (P < 0.05). The microRNA results showed that the expression levels of miR-212 (target genes colla1 and colla2) and miR-18a-5p (target gene colla1) in fish fed Gln group were significantly lower compared to the 11S group fish (P < 0.05). In conclusion, ECM-receptor interaction, tight junction, and cell adhesion molecules pathways play a key role in glutamine alleviation of hybrid grouper enteritis induced by high-dose glycinin, in which miRNAs and target mRNAs/proteins participated cooperatively. Our findings provide valuable insights into the RNAs and protein profiles, contributing to a deeper understanding of the underlying mechanism for fish enteritis.


Assuntos
Bass , Enterite , MicroRNAs , Animais , Alanina , Moléculas de Adesão Celular/genética , Enterite/induzido quimicamente , Perfilação da Expressão Gênica , Glutamina , MicroRNAs/genética , Proteoma/genética , Proteômica
2.
Fish Shellfish Immunol ; 131: 137-149, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36206997

RESUMO

The study evaluated the effects of dietary phosphorus supplementation on the fishmeal replacement with Clostridium autoethanogenum protein (CAP) in the diet of L. vannamei. Four isonitrogenous and isolipid diets were formulated: the PC diet contains 25% fishmeal, the NC, P1 and P2 diets were replaced 40% fishmeal with CAP and supplemented with 0, 0.8 and 1.6% NaH2PO4 respectively (equivalent to dietary phosphorus level of 0.96%, 1.12% and 1.27%). Sampling and V. parahaemolyticus challenge test were conducted after 50-day-feeding (initial shrimp weight 1.79 ± 0.02 g). The results showed that there were no significant differences in the growth performance of shrimp among the 4 groups. The expressions of dorsal in the gut were significantly lower in shrimp fed the P1 and P2 diets than shrimp fed the NC diet and the expression of peroxinectin in the gut was lower in shrimp fed the NC diet than others. The cumulative mortality of shrimp after V. parahaemolyticus challenge was significantly lower in shrimp fed the P2 diet than those fed the NC diet. After the challenge, genes expressions related to the prophenoloxidase activating system (proPO, lgbp, ppaf) were inhibited in the hepatopancreas of shrimp fed NC diet but activated in shrimp fed the P1 diet compared to those fed the PC diet. The AKP and T-AOC activities were higher in shrimp fed the P2 diet than those fed the other diets. The thickness of muscle layer of shrimp fed the P1 diet was thicker than that in the other groups, and significant stress damage happened in the midgut of the shrimp fed the NC diet. The abundance of Pseudoalteromonas, Haloferula and Ruegeria in shrimp fed the P1 diet was higher than those fed the other diets, while Vibrio in shrimp fed the P2 diet was higher than those fed the other diets. This indicated that a low fishmeal diet with dietary phosphorus level of 1.12% could improve the histology, enhance immune response, and increase the abundance of beneficial bacteria in the gut of shrimp. The low fishmeal diet with dietary phosphorus level of 1.27% could improve disease resistance and antioxidant capacity, but there was a possibility of damage to the gut histology as well as increasing abundance of Vibrio in the gut microbiota of shrimp.


Assuntos
Penaeidae , Fósforo na Dieta , Vibrio , Animais , Fósforo na Dieta/farmacologia , Ração Animal/análise , Fósforo , Imunidade Inata , Dieta/veterinária , Suplementos Nutricionais
3.
Fish Shellfish Immunol ; 127: 1088-1099, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35872336

RESUMO

An 8-week feeding trial was conducted to evaluate the effects of chenodeoxycholic acid (CDCA) on growth performance, body composition, lipid metabolism, and intestinal health of juvenile white shrimp, Litopenaeus vannamei fed a low fishmeal diet. Four practical diets were formulated: HFM (25% fishmeal), LFM (15% fishmeal), LB1 (LFM + 0.04% CDCA), LB2 (LFM + 0.08% CDCA). Each diet was assigned to four tanks with forty shrimp (initial weight 0.33 ± 0.03 g) per tank. The results indicated that the growth performance of shrimp were similar between the four groups; the crude lipid content of shrimp fed the LB2 diet was significantly lower than those fed the HFM diet (P < 0.05). The lipase activity content in hepatopancreatic were significantly higher in the two CDCA supplemented groups than that in LFM group; the contents of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol in hemolymph were significantly lower in LFM group, LB1 group and LB2 group than that in HFM group (P < 0.05). The shrimp fed LB1 diet was significantly decreased the intestinal expression levels of tube than those fed in HFM diet; the intestinal gene expression of imd and toll were significantly lower in LB2 group than those in HFM group (P < 0.05). The results of hepatopancreas gene expression suggest that shrimp fed the LFM diet showed significantly upregulated expression levels of sterol regulatory element-binding protein (srebp), acetyl-CoA carboxylase (acc), and carnitine palmitoyltransferase 1 (cpt-1) than those fed the HFM diet; shrimp fed the LB1 diet showed significantly upregulated expression levels of srebp, acc, and AMP-activated protein kinase (ampk) than those fed the HFM diet; shrimp fed the LB2 diet had higher expression levels of srebp, acc, and cpt-1 than those fed the HFM diet (P < 0.05). In the hepatopancreas, the shrimp fed the LFM diet shown significantly up-regulated the expression levels of beclin1 compared to those fed HFM diet; the expression levels of autophagy-related protein13 (atg3), autophagy-related protein 12 (atg12) of in shrimp fed the LB1 diet were significantly higher than those fed the HFM diet; and the expression levels of autophagy-related protein13 (atg13), beclin1, atg3, atg12, autophagy-related protein 9 (atg9) of shrimp fed LB2 diet were significantly higher than those fed the HFM diet (P < 0.05). The atg3 in intestine of shrimp fed the LB2 diet were significantly higher than those fed the HFM diet (P < 0.05). Intestinal mucous fold were damaged, hepatic tubules were disorganized and B cells appeared to be swollen in LFM group. The fold height and width of shrimp fed the diets supplemented with CDCA increased significantly than those fed the LFM diet (P < 0.05), the hepatic tubules were neatly arranged, and R cells increased. In conclusion, supplementary CDCA in a low fishmeal diet promoted lipid metabolism, enhanced autophagy of shrimp, also improved the health of the intestine and hepatopancreas.


Assuntos
Ração Animal , Penaeidae , Ração Animal/análise , Animais , Autofagia , Proteína Beclina-1 , Ácido Quenodesoxicólico/metabolismo , Ácido Quenodesoxicólico/farmacologia , Colesterol/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Imunidade Inata , Intestinos , Metabolismo dos Lipídeos , Penaeidae/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/farmacologia
4.
Ecotoxicol Environ Saf ; 241: 113712, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35660379

RESUMO

Raw materials for making dried shrimp (a type of foodstuff) are mostly from farmed shrimp and preliminary findings indicated that head copper (Cu) concentrations in some commercial dried shrimp products exceeded the safe limit specified in pollution-free aquatic products (50 mg/kg), which may influence food safety. Therefore, a 63-day feeding trial was conducted to explore effects of dietary Cu concentrations on accumulation of Cu in tissues, growth performance, immune response and antioxidant status of Pacific white shrimp (Litopenaeus vannamei). Moderating effect of myo-inositol (MI, adding 200 mg/kg diet) on the adverse impacts caused by excessive dietary Cu was also investigated. 600 shrimp (initial weight: 0.89 ± 0.00 g) were divided into five groups: 37.08 mg Cu/kg diet group (control group), 62.57 mg Cu/kg diet group, 125.99 mg Cu/kg diet group, 63.41 mg Cu/kg diet group (supplemented with MI) and 119.19 mg Cu/kg diet group (supplemented with MI). The results showed that dietary Cu concentrations increased from 37.08 to over 62.57 mg/kg, hepatopancreas Cu concentrations raised from 29.04 to 233.43-263.65 mg/kg, and muscle Cu concentrations only increased from 6.22 to 6.99-8.39 mg/kg. Report to control group, excessive Cu concentration (125.99 mg/kg) didn't significantly affect growth performance, but it notably reduced whole body lipid content and immune response, induced oxidative stress and damaged the hepatopancreas structure, which was ameliorated by MI supplementation. The results suggested that consuming shrimp head and its processed products weren't recommended. Cu concentrations of commercial feeds for Pacific white shrimp should be controlled below 62.57 mg/kg. Additionally, MI supplementation mitigated the negative impacts induced by excessive dietary Cu.


Assuntos
Cobre , Penaeidae , Ração Animal/análise , Animais , Cobre/toxicidade , Dieta , Suplementos Nutricionais , Imunidade Inata , Inositol/farmacologia , Penaeidae/fisiologia
5.
Mar Drugs ; 18(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333811

RESUMO

High-fat diet (HFD) usually induces oxidative stress and astaxanthin is regarded as an excellent anti-oxidant. An 8-week feeding trial was conducted to investigate the effects of dietary astaxanthin supplementation on growth performance, lipid metabolism, antioxidant ability, and immune response of juvenile largemouth bass (Micropterus salmoides) fed HFD. Four diets were formulated: the control diet (10.87% lipid, C), high-fat diet (18.08% lipid, HF), and HF diet supplemented with 75 and 150 mg kg-1 astaxanthin (HFA1 and HFA2, respectively). Dietary supplementation of astaxanthin improved the growth of fish fed HFD, also decreased hepatosomatic index and intraperitoneal fat ratio of fish fed HFD, while having no effect on body fat. Malondialdehyde content and superoxide dismutase activity were increased in fish fed HFD, astaxanthin supplementation in HFD decreased the oxidative stress of fish. The supplementation of astaxanthin in HFD also reduced the mRNA levels of Caspase 3, Caspase 9, BAD, and IL15. These results suggested that dietary astaxanthin supplementation in HFD improved the growth performance, antioxidant ability and immune response of largemouth bass.


Assuntos
Antioxidantes/metabolismo , Bass , Dieta Hiperlipídica , Suplementos Nutricionais , Crescimento/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Animais , Distribuição da Gordura Corporal , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Xantofilas/química , Xantofilas/farmacologia
6.
Front Physiol ; 11: 613, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714197

RESUMO

The aim of the present experiment was to evaluate the effects of Schizochytrium limacinum supplementation on the immune response, gut microbiota, and health of Penaeus monodon fed a low fish-meal (FM) diet. A diet containing 25% FM was used as a control (Diet A), and three other diets were formulated to contain 15% FM and supplemented with 0, 0.75, and 1.5% S. limacinum (Diet B, C, and D, respectively). The experiment was carried out in quadruplicates (30 shrimp per replicate, average weight 1.01 ± 0.01 g), and the shrimps were fed the test diets to apparent satiation three times daily for 8 weeks. Shrimp fed diet B and D showed lower weight gain than those fed diet A. Supplementation of 0.75% S. limacinum enhanced expression of antioxidative genes (superoxide dismutase and catalase) and immune-response-related genes in hepatopancreas but could not affect the gene expression of immune deficiency in hepatopancreas and Tube in the intestine. A low FM diet induced endoplasmic reticulum swelling of the intestinal epithelial cells, which was alleviated by S. limacinum supplementation. Ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry was employed to analyze the changes of hemolymph metabolomics, 49 significantly different metabolites were identified, and lysoPCs, deoxyinosine, inosine, and highly unsaturated fatty acids were lower in fish fed with low FM diets. Intestinal microbial diversity was lower in shrimp fed Diet B than those fed the control diet. Dietary supplementation of 0.75% S. limacinum increased intestinal microbial diversity of shrimp and decreased the ratio of pathogenic bacterium (Thalassotalea and Tenacibaculum). These results indicated that supplementing S. limacinum into a low FM diet improves the growth performance, immune response, and intestinal health of P. monodon. The optimum inclusion level of seems to be 0.75% of diet.

7.
Fish Shellfish Immunol ; 90: 30-39, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31004799

RESUMO

An 8 weeks feeding experiment was conducted to evaluate the effects of dietary supplementation with hydrolyzed yeast (HY) (Rhodotorula mucilaginosa) on growth performance, hematological parameters, immune response and antioxidant ability of juvenile Nile tilapia. Five isonitrogenous and isolipidic diets (32% protein and 4% lipid) with different levels (0%, 0.125%, 0.25%, 0.5%, 1%) of HY were formulated. Each diet was randomly assigned to quadruplicate groups of fish (initial body weight 19.1 ±â€¯0.01 g). Results indicated that significantly higher specific growth rate (SGR) and lower feed conversion rate (FCR) were obtained in fish fed 1% HY diet than that of fish fed 0% HY diet (P < 0.05). Fish fed 0.25% HY diet showed the lowest value of hepatopancreas somatic indices (HSI) and significantly lower than that of fish fed 0% HY diet (P < 0.05). Meanwhile, protein and ash in the whole-body content of fish fed 1% HY diet was significantly higher than that of fish fed 0%-0.5% HY diets. Serum immunological parameters showed that the lysozyme (LZM) activity and Complement C3 content were significantly increased by dietary supplementation of 0.5%-1% HY (P < 0.05). However, dietary supplementation with 0.125%-1% HY significantly decreased the activity of myeloperoxidase (MPO) (P < 0.05). Antioxidant status in serum and liver was significantly enhanced by dietary supplementation of 0.25%-1% HY through the remarkably improved superoxide dismutase (SOD) activity both in serum and liver, the raised total antioxidative capacity (T-AOC) of serum as well as the notably reduced malondialdehyde (MDA) content in the liver (P < 0.05). However, T-AOC in the liver was not significantly influenced among all diet treatments (P > 0.05). Villi height and intraepithelial lymphocytes (IEFs) of mid-intestine were significantly higher in fish fed 0.5%-1% HY diets (P < 0.05). The challenge test demonstrated the enhanced protection against Streptococcus iniae strain by the obtained higher cumulative survival rate. In conclusion, dietary supplementation of 1% HY could maintain the better growth performance, nutrient composition as well as immune response and antioxidant capacity for juvenile Nile tilapia.


Assuntos
Ciclídeos/imunologia , Resistência à Doença/imunologia , Doenças dos Peixes/imunologia , Rhodotorula/química , Infecções Estreptocócicas/veterinária , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/fisiologia , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Distribuição Aleatória , Infecções Estreptocócicas/imunologia , Streptococcus iniae/fisiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-30448604

RESUMO

An 8-week feeding trial was conducted to evaluate the effect of fish-meal replacement on growth performance, protein synthesis and immune response of juvenile Pacific white shrimp, Litopenaeus vannamei reared at low salinity (7‰). Five isonitrogenous and isolipidic diets were formulated to contain graded levels (25, 20, 15, 10 and 5%) of fish-meal. High quality alternative solutions were performed, crystalline amino acids, phytase, mannan oligosaccharides and some micro-nutrients were supplemented in the low fish-meal diets. Each diet was randomly assigned to triplicate tanks, each tank with 30 shrimp (mean weight 0.3 g), the shrimp were fed 3 times a day. Weight gain and survival were decreased with the decreasing dietary fish meal levels. When dietary fish-meal decreased, the gene expression of TOR, Raptor and eIF4E2 in hepatopancreas were decreased with the decreasing fish meal levels, eIF4E2 in intestine was decreased while 4E-BP was increased with the decreasing fish meal levels. The mRNA level of SOD in hepatopancreas decreased, and the expression of GPx and CAT increased with the decreasing FM levels. The Toll pathway was affected by dietary FM levels, the expression of Toll2, TNFSF, MyD88, Rho and p38 in intestine were increased with the decreasing FM levels. The results indicated that at low salinity condition, fish meal level lower than 15% would inhibit the protein synthesis and harm to the health of shrimp.


Assuntos
Ração Animal , Proteínas de Artrópodes , Regulação da Expressão Gênica/imunologia , Penaeidae , Salinidade , Animais , Proteínas de Artrópodes/biossíntese , Proteínas de Artrópodes/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Penaeidae/imunologia , Penaeidae/metabolismo
9.
Fish Shellfish Immunol ; 81: 135-149, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30017927

RESUMO

Two trials were conducted to determine the effects of dietary macroalgae Porphyra haitanensis on growth, immunity and intestinal microbiota of Litopenaeus vannamei. In trial 1, shrimp (mean initial wet weight about 0.64 g) were fed with seven diets (P0, P1, P2, P3, P4, P5 and P6) containing 0% (basal diet), 1%, 2%, 3%, 4%, 5% and 6% P. haitanensis in triplicate for 60 days. Growth performance (weight gain, WG; specific growth rate, SGR) of shrimp fed the P4 diet were significantly higher than that of shrimp fed P0, P5 and P6 diets (P < 0.05) but without significant differences with shrimp fed P1-P3 diets (P > 0.05). Hepatopancreas phenoloxidase (PO) activity of shrimp fed the P. haitanensis containing diets was significantly higher than that of shrimp fed the basal diet (P0) (P < 0.05). Total haemocyte count (THC) of shrimp fed basal diet (P0) was significantly lower than that of shrimp fed diets containing P. haitanensis. Our results declared that dietary P. haitanensis supplementation increases the abundance of beneficial bacterials such as Nitrosopumilus, Marinobacter or Bifidobacterium and reduces the abundance of harmful bacterias such as Vibrio, and especially pronounced in P4 diet treatment. In trial 2, a WSSV injection challenge test was conducted for 7-day after the rearing trial and shrimp survival was also compared among treatments. A sudden shrimp death was found from the 4th day, and values of survival of shrimp fed the P3-P4 diets were higher than that of shrimp fed other diets during 4-7 days challenge test. The immune response in trial 2 were characterized by higher superoxide dismutase activity (SOD) and PO activities, lower THC and higher HCT compared to levels found in trial 1. In conclusion, suitable dietary P. haitanensis could enhance the growth performance, antioxidant capacity and alter total bacterial numbers or microbial diversity of L. vannamei and furthermore reduce oxidative stress and immune depression challenged by WSSV injection stress, and the level of P. haitanensis supplemented in the diet should be between 2.51% and 3.14%.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal , Imunidade Inata , Penaeidae/crescimento & desenvolvimento , Porphyra , Ração Animal/análise , Animais , Antioxidantes/administração & dosagem , Aquicultura , Hemócitos/metabolismo , Estresse Oxidativo , Penaeidae/imunologia , Penaeidae/microbiologia , Superóxido Dismutase/metabolismo
10.
Fish Shellfish Immunol ; 80: 452-457, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29933110

RESUMO

A 25-days experiment was conducted to evaluate the effect of dietary Haematococcus pluvialis on growth, survival, immune response and stress tolerance ability of post-larval Litopenaeus vannamei. Post-larval white shrimp (mean initial weight 2.1 mg) were fed five isoenergic and isonitrogenous diets containing grade levels of Haematococcus pluvialis (0, 1.7, 3.3, 6.7 and 13.3 g kg-1 diet, respectively). Results indicated that 3.3 g Haematococcus pluvialis kg-1 diet increased the survival rate of post-larval white shrimp. Specific growth rate (SGR) and weight gain (WG) showed no difference among each groups. After the acute salinity stress (salinity decreased rapidly from 28‰ to 5‰), survival of shrimp fed 6.7 g Haematococcus pluvialis kg-1 diet significant higher than the control (P < 0.05), and the total antioxidant capacity (T-AOC) was increased with the increasing dietary Haematococcus pluvialis levels. The malonaldehyde (MDA) contents in whole body decreased with the increasing dietary Haematococcus pluvialis levels before and after the salinity stress. Before the salinity stress, relative mRNA levels of Caspase 3, Rho and Janus kinase (JAK) decreased in shrimp fed diets contain Haematococcus pluvialis. After the salinity stress, relative mRNA levels of anti-oxidative related genes and immune related genes decreased with the dietary Haematococcus pluvialis level increased to 3.3 g kg-1. Based on the effect of Haematococcus pluvialis on survival, salinity stress tolerance ability and the immune response of post-larval L. vannamei, the optimal level of Haematococcus pluvialis was 3.3-6.7 g kg-1 diet (100-200 mg astaxanthin kg-1 diet).


Assuntos
Clorófitas , Dieta/veterinária , Penaeidae/fisiologia , Salinidade , Estresse Fisiológico/imunologia , Ração Animal , Animais , Caspase 3/genética , Expressão Gênica , Glutationa Peroxidase/metabolismo , Janus Quinases/genética , Malondialdeído/metabolismo , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo , Quinases Associadas a rho/genética
11.
Fish Shellfish Immunol ; 75: 316-326, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29454898

RESUMO

Two trials were conducted to determine the effects of dietary Forsythia suspensa extract (FSE) on shrimp, Penaeus monodon, first on growth performance, second on the immune response and immune related gene expression of shrimp. In trial 1, shrimp (mean initial wet weight about 3.02 g) were fed with five diets containing 0% (basal diet), 0.01%, 0.02%, 0.04% and 0.06% FSE in triplicate for 60 days. Growth performance (final body wet weight, FBW; weight gain, WG; biomass gain, BG) of shrimp fed FSE diets were higher (P < 0.05) than that of shrimp fed the basal diet. The survival among all the diets treatments were above 90% and no significant difference was revealed among them (P > 0.05). The antioxidant capacity (total antioxidant status, TAS; glutathione peroxidase, GSH-Px) appears in the trend of firstly increasing then decreasing with the increasing of dietary FSE levels. The highest value of TAS and GSH-Px were found in shrimp fed 0.02% FSE diet and were significantly higher than that of shrimp fed the basal and 0.06% FSE diets (P < 0.05). Hepatopancreas malondialdehyde (MDA) of shrimp fed FSE diets were lower (P < 0.05) than that of shrimp fed the basal diet. Total haemocyte count of shrimp fed the basal diet was lower (P < 0.05) than that of shrimp fed FSE diets. Haemolymph clotting time of shrimp had the opposite trend with the total haemocyte count of shrimp. No significant differences were found in haemolymph biomarkers of intestinal permeability (endotoxin and diamine oxidase) and in molecular gene expression profiles of heat shock protein 70 (Hsp 70) mRNA and hypoxia inducible factor-1α (HIF-1α) mRNA in haemolymph of shrimp among all diet treatments (P > 0.05). In trial 2, a pathogenic strain of Vibrio parahaemolyticus 3HP (VP3HP) injection challenge test was conducted for 6-day after the rearing trial and shrimp survival were also compared among treatments. Survival of shrimp fed diets supplemented with 0.01%-0.02% FSE were higher than that of shrimp fed the basal and 0.06% FSE diets (P < 0.05). Dietary FSE supplementation produced stronger hepatopancreas antioxidant capacity (TAS, GSH-Px) (P < 0.05) and higher glutathione (GSH) level (P < 0.05), lower superoxide dismutase activity (SOD) (P < 0.05), higher total haemocyte count (P < 0.05), lower haemolymph clotting time (P < 0.05), lower MDA and carbonyl protein concentration (P < 0.05), lower haemolymph biomarkers of intestinal permeability (endotoxin and diamine oxidase) (P < 0.05), generated lower molecular gene expression profiles of HSP 70 mRNA and higher HIF-1α mRNA (P < 0.05) than the basal diet. The immune response were characterized by lower TAS and higher antioxidant enzyme activities (SOD, GSH-Px) and higher oxidative stress level (MDA and carbonyl protein) and higher haemolymph biomarkers of intestinal permeability (endotoxin and diamine oxidase) compared to levels found in trail 1. However, the total haemocyte counts and haemolymph clotting times were not changed in 0.01%-0.02% FSE diets treatments between trial 1 and trial 2 (P > 0.05). The molecular gene expression profile of Hsp 70 mRNA was increased while HIF-1α mRNA was decreased when compared to trial 1. In conclusion, results suggested that dietary intake containing FSE could enhance the growth performance and antioxidant capacity of P. monodon and furthermore reduce oxidative stress and immune depression challenged by a pathogenic strain of Vibrio parahaemolyticus stress. Considering the effect of FSE on both growth performance and immune response of P. monodon, the level of FSE supplemented in the diet should be between 0.01% and 0.02%.


Assuntos
Forsythia/química , Imunidade Inata , Penaeidae/fisiologia , Extratos Vegetais/metabolismo , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Biomarcadores , Dieta , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Hemolinfa/imunologia , Hepatopâncreas/imunologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Estresse Oxidativo/imunologia , Penaeidae/genética , Penaeidae/crescimento & desenvolvimento , Penaeidae/imunologia , Extratos Vegetais/administração & dosagem , Vibrio parahaemolyticus/fisiologia
12.
Fish Physiol Biochem ; 43(4): 1011-1020, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28124206

RESUMO

An 8-week feeding trial was conducted to evaluate the effect of N-acetyl cysteine (NAC) and glycine supplementation on growth performance, glutathione (GSH) synthesis, and antioxidative ability of grass carp, Ctenopharyngodon idella. Four practical diets were formulated: control, control + 0.2% NAC, control + 0.5% glycine, and control + 0.2% NAC + 0.5% glycine. Each diet was randomly assigned to quadruplicate groups of 30 fish (approximately 8.8 g). Weight gain and specific growth rate were significantly increased with the supplementation of NAC. Supplementation of NAC plus glycine significantly increased the feed efficiency. Glutathione peroxidase (GPx) and γ-glutamine cysteine synthase (γ-GCS) in plasma were significantly increased with the supplementation of NAC plus glycine. GSH in plasma increased and malondialdehyde (MDA) decreased in fish fed diets supplemented with NAC. Respiratory burst, superoxide dismutase (SOD), and catalase (CAT) activity were not affected by NAC or glycine. These results clearly indicated that NAC improved the growth performance and restored GSH of grass carp, supplemented NAC together with glycine enhanced GSH synthesis, and improved the antioxidative ability of grass carp.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/metabolismo , Carpas/metabolismo , Suplementos Nutricionais , Glutationa/biossíntese , Glicina/farmacologia , Acetilcisteína/administração & dosagem , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Glicina/administração & dosagem
13.
Fish Shellfish Immunol ; 55: 233-41, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27235905

RESUMO

An 8-week feeding trial was conducted to evaluate the effect of N-acetyl cysteine (NAC) and glycine supplementation on growth performance, glutathione (GSH) synthesis, anti-oxidative and immune ability of Nile tilapia, Oreochromis niloticus. Four practical diets were formulated, control, control +0.2% NAC, control +0.5% glycine, control +0.2% NAC +0.5% glycine. Each diet was randomly assigned to quadruplicate groups of 30 fish (approximately 9.5 g). The weight gain and specific growth rate were significantly increased with the supplementation of NAC and glycine. While they had no effect on feed efficiency feed intake and survival. Glutathion peroxidase (GPx) was increased by NAC and γ-glutamine cysteine synthase (γ-GCS) in plasma were increased by glycine. After the feeding trail, fish were challenged by Streptococcus iniae, fish fed the diet supplemented with NAC obtained significantly higher survival rate after 72 h challenge test. NAC also decreased malonaldehyde (MDA) in liver, increased glutathione S-transferase (GST) activity in plasma, up-regulated mRNA expression of Superoxide dismutase (SOD) and GPx in liver and headkidney. Dietary supplementation of glycine increased the anti-oxidative ability of tilapia through increase anti-oxidative enzyme activity (SOD, glutathione reductase, myeloperoxidase) and up-regulate anti-oxidative gene expression (SOD). Immune ability only enhanced by the supplementation of NAC through increased interleukin-1ß (IL-1ß) mRNA expression. These results clearly indicated that the supplementation of NAC and glycine can significantly improve the growth performance of tilapia, and NAC also enhance the anti-oxidative and immune capacity of tilapia, glycine could only enhance the anti-oxidative ability.


Assuntos
Acetilcisteína/metabolismo , Ciclídeos , Doenças dos Peixes/imunologia , Glicina/metabolismo , Imunidade Inata , Infecções Estreptocócicas/veterinária , Acetilcisteína/análogos & derivados , Acetilcisteína/análise , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Doenças dos Peixes/microbiologia , Glutationa/metabolismo , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus iniae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA