Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 39(10): 1645-1660, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29849127

RESUMO

Escin, a triterpene saponin isolated from horse chestnut seed, has been used to treat encephaledema, tissue swelling and chronic venous insufficiency. Recent studies show that escin induces cell cycle arrest, tumor proliferation inhibition and tumor cell apoptosis. But the relationship between escin-induced DNA damage and cell apoptosis in tumor cells remains unclear. In this study, we investigated whether and how escin-induced DNA damage contributed to escin-induced apoptosis in human colorectal cancer cells. Escin (5-80 µg/mL) dose-dependently inhibited the cell viability and colony formation in HCT116 and HCT8 cells. Escin treatment induced DNA damage, leading to p-ATM and γH2AX upregulation. Meanwhile, escin treatment increased the expression of p62, an adaptor protein, which played a crucial role in controlling cell survival and tumorigenesis, and had a protective effect against escin-induced DNA damage: knockdown of p62 apparently enhanced escin-induced DNA damage, whereas overexpression of p62 reduced escin-induced DNA damage. In addition, escin treatment induced concentration- and time-dependent apoptosis. Similarly, knockdown of p62 significantly increased escin-induced apoptosis in vitro and produced en escin-like antitumor effect in vivo. Overexpression of p62 decreased the rate of apoptosis. Further studies revealed that the functions of p62 in escin-induced DNA damage were associated with escin-induced apoptosis, and p62 knockdown combined with the ATM inhibitor KU55933 augmented escin-induced DNA damage and further increased escin-induced apoptosis. In conclusion, our results demonstrate that p62 regulates ATM/γH2AX pathway-mediated escin-induced DNA damage and apoptosis.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Escina/uso terapêutico , Proteína Sequestossoma-1/metabolismo , Animais , Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Escina/farmacologia , Feminino , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos Nus , Proteína Sequestossoma-1/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
2.
Oncotarget ; 8(1): 988-998, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27894091

RESUMO

Here, we assessed the anti-colorectal cancer (CRC) cell activity of cinobufagin (CBG). We found that CBG exerted potent cytotoxic and anti-proliferative activity against CRC lines (HCT-116 and HT-29) and primary human CRC cells. Meanwhile, it activated apoptosis, and disrupted cell-cycle progression in the cells. At the signaling level, CBG treatment in CRC cells provoked endoplasmic reticulum stress (ER stress), the latter was evidenced by caspase-12 activation, CHOP expression, as well as PERK and IRE1 phosphorylations. Contrarily, the ER stress inhibitor salubrinal, the caspase-12 inhibitor and CHOP shRNA remarkably attenuated CBG-induced CRC cell death and apoptosis. Further, CBG in-activated mammalian target or rapamycin complex 1 (mTORC1), which appeared responsible for proliferation inhibition in CRC cells. Introduction of a constitutively-active S6K1 ("ca-S6K1") restored proliferation of CBG-treated CRC cells. Finally, CBG intraperitoneal injection suppressed HCT-116 xenograft tumor growth in the nude mice. CHOP upregulation and mTORC1 in-activation were also noticed in CBG-treated HCT-116 tumors. The results of this preclinical study suggest that CBG could be tested as promising anti-CRC agent.


Assuntos
Antineoplásicos/farmacologia , Bufanolídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA