Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Commun ; 5(1): 100677, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37634079

RESUMO

Rheum officinale, a member of the Polygonaceae family, is an important medicinal plant that is widely used in traditional Chinese medicine. Here, we report a 7.68-Gb chromosome-scale assembly of R. officinale with a contig N50 of 3.47 Mb, which was clustered into 44 chromosomes across four homologous groups. Comparative genomics analysis revealed that transposable elements have made a significant contribution to its genome evolution, gene copy number variation, and gene regulation and expression, particularly of genes involved in metabolite biosynthesis, stress resistance, and root development. We placed the recent autotetraploidization of R. officinale at ∼0.58 mya and analyzed the genomic features of its homologous chromosomes. Although no dominant monoploid genomes were observed at the overall expression level, numerous allele-differentially-expressed genes were identified, mainly with different transposable element insertions in their regulatory regions, suggesting that they functionally diverged after polyploidization. Combining genomics, transcriptomics, and metabolomics, we explored the contributions of gene family amplification and tetraploidization to the abundant anthraquinone production of R. officinale, as well as gene expression patterns and differences in anthraquinone content among tissues. Our report offers unprecedented genomic resources for fundamental research on the autopolyploid herb R. officinale and guidance for polyploid breeding of herbs.


Assuntos
Rheum , Rheum/genética , Variações do Número de Cópias de DNA , Haplótipos , Antraquinonas/análise , Evolução Molecular
2.
Genomics ; 115(2): 110571, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746219

RESUMO

BACKGROUND: The beet armyworm Spodoptera exigua is a polyphagous caterpillar that causes serious damage to many species of crops and vegetables. To gain insight into how this polyphagous insect differs from less harmful oligophagous species, we generated a chromosome-level assembly and compared it to closely related species with the same or different feeding habits. RESULTS: Based on Illumina and Pacific Biosciences data and Hi-C technology, 425.6 Mb of genome sequences were anchored and oriented into 31 linkage groups, with an N50 length of 14.8 Mb. A total of 24,649 gene models were predicted, of which 97.4% were identified in the genome assembly. Chemosensory genes are vital for locating food: of the four main families, odorant-binding proteins, chemosensory proteins and olfactory receptors showed little difference, whereas gustatory receptors are greatly expanded in S. exigua. Examination of other polyphagous insects confirmed this difference from oligophagous congeners and further identified the bitter receptor subfamily as being particularly affected. CONCLUSION: Our high-quality genome sequence for beet armyworm identified a key expansion of the bitter gustatory receptor subfamily in this and other pests that differs crucially from more benign relatives and offers insight into the biology and possible future means of control for these economically important insects.


Assuntos
Beta vulgaris , Humanos , Animais , Spodoptera/genética , Spodoptera/metabolismo , Beta vulgaris/genética , Cromossomos
3.
J Integr Plant Biol ; 65(6): 1423-1441, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36680412

RESUMO

Common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (Fagopyrum tataricum), the two most widely cultivated buckwheat species, differ greatly in flavonoid content and reproductive mode. Here, we report the first high-quality and chromosome-level genome assembly of common buckwheat with 1.2 Gb. Comparative genomic analysis revealed that common buckwheat underwent a burst of long terminal repeat retrotransposons insertion accompanied by numerous large chromosome rearrangements after divergence from Tartary buckwheat. Moreover, multiple gene families involved in stress tolerance and flavonoid biosynthesis such as multidrug and toxic compound extrusion (MATE) and chalcone synthase (CHS) underwent significant expansion in buckwheat, especially in common buckwheat. Integrated multi-omics analysis identified high expression of catechin biosynthesis-related genes in flower and seed in common buckwheat and high expression of rutin biosynthesis-related genes in seed in Tartary buckwheat as being important for the differences in flavonoid type and content between these buckwheat species. We also identified a candidate key rutin-degrading enzyme gene (Ft8.2377) that was highly expressed in Tartary buckwheat seed. In addition, we identified a haplotype-resolved candidate locus containing many genes reportedly associated with the development of flower and pollen, which was potentially related to self-incompatibility in common buckwheat. Our study provides important resources facilitating future functional genomics-related research of flavonoid biosynthesis and self-incompatibility in buckwheat.


Assuntos
Fagopyrum , Flavonoides , Flavonoides/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Rutina/análise , Rutina/metabolismo , Genes de Plantas , Sementes/genética
4.
Phytomedicine ; 107: 154451, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36126407

RESUMO

BACKGROUND: Pinelliae Rhizoma (PR), a toxic medication, with long history, is commonly used for eliminating phlegm. Due to the shortage of wild resources and the relative lacking of cultivation technology, it is often confused with its counterfeit species in the market, such as Typhonii Rhizoma (TR), Arisaematis Rhizoma (AR) and tubers of Typhonium flagelliforme (TF) and Pinellia pedatisecta (PP). PURPOSE: It was aimed to screen signature enzymatic peptides from toxic proteins to identify PR and its four counterfeit species. STUDY DESIGN: A comparative proteogenomics strategy based on open-source transcriptome data was applied for screening signature peptides from toxic proteins, which were applied for species authentication of PR and its counterfeit species. METHODS: Firstly, the open-source transcriptome data was used for constructing the annotated protein database, which was used for peptides identification. Secondly, the toxicity of different fractions of PR were evaluated by the rat peritoneal inflammation model. Furthermore, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were used to profile the main proteins bands of five species, whose sequences were identified based on the in-gel digestion experiment by using ultra-high-performance liquid chromatography/quadrupole-Orbitrap mass spectrometry. Finally, the label-free proteomic analysis was performed to character the proteins and screen the signature peptides of five species, which were validated in commercially available products by dynamic multi reaction monitor (DMRM). RESULTS: The results in this study confirmed that protein was the main toxic components of PR. Both Pinellia ternata agglutinin (PTA) and trypsin inhibitor (TI) like proteins are the main proteins, which were characterized by proteomic analysis based on four annotated protein database. Meanwhile, seven signature peptides from toxic proteins were screened and validated with good repeatability and specificity in commercial products. CONCLUSION: Seven signature enzymatic peptides from toxic protein screened by the comparative proteogenomics strategy based on open-source transcriptome data achieved good identification ability of PR and its four counterfeit species.


Assuntos
Medicamentos de Ervas Chinesas , Pinellia , Aglutininas , Animais , Medicamentos de Ervas Chinesas/farmacologia , Peptídeos , Pinellia/química , Proteômica , Ratos , Dodecilsulfato de Sódio , Inibidores da Tripsina
5.
Nat Commun ; 11(1): 340, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953413

RESUMO

Mikania micrantha is one of the top 100 worst invasive species that can cause serious damage to natural ecosystems and substantial economic losses. Here, we present its 1.79 Gb chromosome-scale reference genome. Half of the genome is composed of long terminal repeat retrotransposons, 80% of which have been derived from a significant expansion in the past one million years. We identify a whole genome duplication event and recent segmental duplications, which may be responsible for its rapid environmental adaptation. Additionally, we show that M. micrantha achieves higher photosynthetic capacity by CO2 absorption at night to supplement the carbon fixation during the day, as well as enhanced stem photosynthesis efficiency. Furthermore, the metabolites of M. micrantha can increase the availability of nitrogen by enriching the microbes that participate in nitrogen cycling pathways. These findings collectively provide insights into the rapid growth and invasive adaptation.


Assuntos
Genoma de Planta , Mikania/crescimento & desenvolvimento , Mikania/genética , Mikania/fisiologia , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Cromossomos de Plantas , Ecologia , Ecossistema , Evolução Molecular , Genômica , Espécies Introduzidas , Nitrogênio/metabolismo , Ciclo do Nitrogênio , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Análise de Sequência de DNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA