Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int Immunopharmacol ; 128: 111492, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218009

RESUMO

Jellyfish dermatitis is a common medical problem in many countries due to the jellyfish envenomation. However, there are no specific and targeted medications for their treatment. Here we investigated the possible therapeutic effects of metalloproteinase inhibitors on the dermal toxicity of Nemopilema nomurai nematocyst venom (NnNV), a giant venomous jellyfish from China, using the jellyfish dermatitis model, focusing on inflammatory effector molecules during jellyfish envenomation. Metalloproteinase may further stimulate inflammation by promoting oxidative stress in the organism and play key roles by activating MAPK and NF-κB, in the pathogenesis of jellyfish dermatitis. And the metalloproteinase inhibitors batimastat and EDTA disodium salt may treat the Jellyfish dermatitis by inhibiting the metalloproteinase activity in NnNV. These observations suggest that the metalloproteinase components of NnNV make a considerable contribution to dermal toxicity as the inflammation effect molecular, and metalloproteinase inhibitors can be regarded as novel therapeutic medicines in jellyfish envenomation. This study contributes to understanding the mechanism of jellyfish dermatitis and suggests new targets and ideas for the treatment of jellyfish envenomation.


Assuntos
Venenos de Cnidários , Dermatite , Cifozoários , Animais , Humanos , Nematocisto , Venenos de Cnidários/toxicidade , Metaloproteases , Inflamação
2.
J Proteomics ; 292: 105048, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-37981009

RESUMO

Toxin metalloproteinases are the primary components responsible for various toxicities in jellyfish venom, and there is still no effective specific therapy for jellyfish stings. The comprehension of the pathogenic mechanisms underlying toxin metalloproteinases necessitates further refinement. In this study, we conducted a differential analysis of a dermatitis mouse model induced by jellyfish Nemopilema nomurai venom (NnNV) samples with varying levels of metalloproteinase activity. Through skin tissue proteomics and serum metabolomics, the predominant influence of toxin metalloproteinase activity on inflammatory response was revealed, and the signal pathway involved in its regulation was identified. In skin tissues, many membrane proteins were significantly down-regulated, which might cause tissue damage. The expression of pro-inflammatory factors was mainly regulated by PI3K-Akt signaling pathway. In serum, many fatty acid metabolites were significantly down-regulated, which might be the anti-inflammation feedback regulated by NF-κB p65 signaling pathway. These results reveal the dermatitis mechanism of toxin metalloproteinases and provide new therapeutic targets for further studies. SIGNIFICANCE: Omics is an important method to analyze the pathological mechanism and discover the key markers, which can reveal the pathological characteristics of jellyfish stings. Our research first analyzed the impact of toxin metalloproteinases on jellyfish sting dermatitis by skin proteomics and serum metabolomics. The present results suggest that inhibition of toxin metalloproteinases may be an effective treatment strategy, and provide new references for further jellyfish sting studies.


Assuntos
Venenos de Cnidários , Dermatite , Cifozoários , Toxinas Biológicas , Animais , Camundongos , Fosfatidilinositol 3-Quinases , Venenos de Cnidários/farmacologia , Metaloproteases , Anti-Inflamatórios
3.
Int J Biol Macromol ; 253(Pt 7): 127449, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844814

RESUMO

Jellyfish dermatitis is a common medical problem caused by jellyfish stings. However, there are no targeted and effective medications for their treatment. Here, the biological activity of fucoidan for treatment of jellyfish dermatitis was investigated for the first time. 3 mg/mL Fucoidan attenuated the inflammatory effects of Nemopilema nomurai nematocyst venom (NnNV), including dermal toxicity and myotoxicity. Fucoidan may decrease the inflammatory effects of NnNV by downregulating MAPK and NF-κB pathways. This may be attributed to the inhibitory effect of fucoidan on metalloproteinases and phospholipase A2 (PLA2) in NnNV. 3 mg/mL fucoidan reduced the metalloproteinase activity in NnNV from 316.33 ± 20.84 U/mg to 177.33 ± 25.36 U/mg, while the inhibition of PLA2 activity in NnNV by 1 mg/mL fucoidan could reach 37.67 ± 3.42 %. Besides, external application of 3 mg/mL fucoidan can effectively alleviate the symptoms of jellyfish dermatitis. These observations suggest that fucoidan has considerable potential for treatment of jellyfish dermatitis and could be regarded as a novel medicine for jellyfish envenomation. This study provides new ideas for treatment of jellyfish envenomation and suggests evidence for the use of fucoidan in the treatment of jellyfish dermatitis as well as broadens the potential application of fucoidan in clinical practice.


Assuntos
Venenos de Cnidários , Dermatite , Cifozoários , Animais , Humanos , Fosfolipases A2
4.
Genomics ; 115(6): 110709, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37739021

RESUMO

Recent studies on marine organisms have made use of third-generation sequencing technologies such as Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). While these specialized bioinformatics tools have different algorithmic designs and performance capabilities, they offer scalability and can be applied to various datasets. We investigated the effectiveness of PacBio and ONT RNA sequencing methods in identifying the venom of the jellyfish species Nemopilema nomurai. We conducted a detailed analysis of the sequencing data from both methods, focusing on key characteristics such as CD, alternative splicing, long-chain noncoding RNA, simple sequence repeat, transcription factor, and functional transcript annotation. Our findings indicate that ONT generally produced higher raw data quality in the transcriptome analysis, while PacBio generated longer read lengths. PacBio was found to be superior in identifying CDs and long-chain noncoding RNA, whereas ONT was more cost-effective for predicting alternative splicing events, simple sequence repeats, and transcription factors. Based on these results, we conclude that PacBio is the most specific and sensitive method for identifying venom components, while ONT is the most cost-effective method for studying venogenesis, cnidocyst (venom gland) development, and transcription of virulence genes in jellyfish. Our study has implications for future sequencing technologies in marine jellyfish, and highlights the power of full-length transcriptome analysis in discovering potential therapeutic targets for jellyfish dermatitis.


Assuntos
Venenos de Cnidários , Cifozoários , Animais , RNA , Análise de Sequência de RNA , RNA não Traduzido , Sequenciamento de Nucleotídeos em Larga Escala/métodos
5.
Chem Biol Interact ; 365: 110113, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35987279

RESUMO

The major jellyfish stings that occur in China are caused by scyphozoan Nemopilema nomurai, whose venom exhibits significant metalloproteinase activity that contributes to the toxic effects of jellyfish envenomation. Researching effective inhibitors suppressing the metalloproteinase activity of jellyfish venom represents a new attempt to cure jellyfish envenomations. In the present study, secondary metabolites produced by the jellyfish-associated fungus Aspergillus versicolor SmT07 were isolated and evaluated for their anti-proteolytic activities. Two xanthones, sterigmatocystin (JC-01) and oxisterigmatocystin C (JC-06), and four alkaloids, cottoquinazoline A (JC-02), phenazine-1-carboxylic acid (JC-03), viridicatin (JC-04) and viridicatol (JC-05), were isolated and identified. Only phenazine-1-carboxylic acid (PCA) showed significant anti-proteolytic activity of jellyfish venom assayed on azocasein, and the IC50 value was 2.16 mM. PCA also significantly inhibited fibrinogenolytic activity, protecting the Bß chain of fibrinogen from degradation when preincubated with jellyfish venom at a ratio of >1:0.6 (PCA:venom, w/w). Molecular docking with several well-characterized snake venom metalloproteinases suggested the venom metalloproteinases inhibitory property of PCA by forming complex interactions with the active site via hydrogen bonds, π-π stacking and salt bridges, which was distinct from the binding mode of batimastat. The present study represents the first study identifying natural jellyfish venom metalloproteinase inhibitors from marine natural products, which may provide an alternative to develop therapeutic agents for treating jellyfish envenomations.


Assuntos
Venenos de Cnidários , Cifozoários , Animais , Aspergillus/metabolismo , Venenos de Cnidários/química , Venenos de Cnidários/farmacologia , Metaloproteases/metabolismo , Simulação de Acoplamento Molecular , Cifozoários/metabolismo
6.
Biomed Pharmacother ; 151: 113192, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35644119

RESUMO

Jellyfish envenomation is a common medical problem in many countries. However, the myotoxicity and effector molecules of scyphozoan venoms remain uninvestigated. Here, we present the myotoxicity of nematocyst venom from Nemopilema nomurai (NnNV), a giant venomous scyphozoan from China, for the first time, using in vivo models with inhibitors. NnNV was able to induce remarkable myotoxicity including significant muscle swelling, increasing the content of CK and LDH in serum, stimulating inflammation of muscle tissue, and destroying the structure of muscle tissue. In addition, the metalloproteinase inhibitors BMT and EDTA significantly reduced the myotoxicity induced by NnNV. Moreover, BMT and EDTA could decrease the inflammatory stimulation and necrosis of muscle tissue caused by the venom. These observations suggest that the metalloproteinase components of NnNV make a considerable contribution to myotoxicity. This study contributes to understanding the effector molecules of muscle injury caused by jellyfish stings and suggests a new idea for the treatment of scyphozoan envenomation.


Assuntos
Venenos de Cnidários , Cifozoários , Animais , Venenos de Cnidários/química , Venenos de Cnidários/toxicidade , Ácido Edético , Metaloproteases , Miotoxicidade
7.
Bioengineered ; 12(1): 7235-7247, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34569908

RESUMO

Kidney damages caused by cadmium are considered to be one of the most dangerous consequences for the human body. This study aimed to investigate the protective effects of fucoxanthin supplementation on mice models subjected to cadmium-induced kidney damage. The mice treated with cadmium chloride (CdCl2) were observed to have significantly reduced the cross-section area of glomeruli. Cadmium exposure has also caused the damage of the structural integrity of mitochondria and increased blood urea nitrogen (BUN), kidney injury molecule 1 (KIM1), and neutrophil gelatinase associated lipocalin (NGAL) levels. Peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) levels in cadmium-exposed mice were markedly declined. Caspase3, caspase8, and caspase9 gene expressions in association with apoptosis were dramatically elevated in renal tissues. The CdCl2 treated mice were orally administered with 50 mg/kg Shenfukang, 10 mg/kg, 25 mg/kg, and 50 mg/kg fucoxanthin for 14 days. The results revealed that high doses of fucoxanthin administration significantly decreased BUN, KIM1, NGAL levels, increasing POD, SOD, CAT, and ascorbate APX levels. Fucoxanthin administration also promoted recovery of the renal functions, micro-structural organization, and ultra-structural organization in the renal cells. In summary, the ameliorative effects of fucoxanthin supplementation against cadmium-induced kidney damage were mediated via inhibiting oxidative stress and apoptosis, promoting the recovery of structural integrity of mitochondria.


Assuntos
Antioxidantes/farmacologia , Cádmio/toxicidade , Nefropatias , Peroxidação de Lipídeos/efeitos dos fármacos , Xantofilas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Rim/efeitos dos fármacos , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos
8.
Toxins (Basel) ; 13(6)2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200597

RESUMO

Jellyfish are rich in resources and widely distributed along coastal areas. As a potential approach to respond to jellyfish blooms, the use of jellyfish-derived products is increasing. The citrus spider mite (Panonychus citri) is one of the key citrus pests, negatively impacting the quality and quantity of oranges. Due to the resistance and residue of chemical acaricides, it is important to seek natural substitutes that are environmentally friendly. The field efficacy of the venom from the jellyfish Nemopilema nomurai against P. citri was assayed in a citrus garden. The frozen N. nomurai tentacles were sonicated in different buffers to isolate the venom. The venom isolated by PBS buffer (10 mM, pH 6.0) had the strongest acaricidal activity of the four samples, and the corrected field efficacy 7 days after treatment was up to 95.21%. This study demonstrated that jellyfish has potential use in agriculture.


Assuntos
Acaricidas/farmacologia , Agentes de Controle Biológico/farmacologia , Citrus/parasitologia , Venenos de Cnidários/farmacologia , Cifozoários , Tetranychidae/efeitos dos fármacos , Agricultura/métodos , Animais , Citrus/efeitos dos fármacos , Tetranychidae/fisiologia
9.
Biol Trace Elem Res ; 199(5): 1877-1884, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32691210

RESUMO

The intervention effect of fucoxanthin, which is reportedly a powerful antioxidant, on cadmium-induced thyroid damage in mice was evaluated. Animals (N = 120) were divided into control group (given pure water, N = 20) and CdCl2-exposed group (given CdCl2 orally at a dose of 30 mg/kg body weight (bw)/day for 30 days, N = 100). Besides, the CdCl2-exposed group was divided into the following 5 groups (N = 20) to evaluate the intervention effect of fucoxanthin: (1) negative control group (NCG; animals were supplied with pure water); (2) positive control group (PCG; animals were supplied with 50 mg/kg bw/day thyroid tablets. Thyroid tablets are made from the thyroid glands of pigs, cattle, sheep and other food animals (the main components of T4). But because they are extracts of the thyroid glands, they may contain a small amount of T3. The specific amount of T3 is unknown.); (3) low fucoxanthin concentration group (F1; animals were supplied with 10 mg/kg bw/day fucoxanthin); (4) medium fucoxanthin concentration group (F2; animals were supplied with 25 mg/kg bw/day fucoxanthin); (5) high fucoxanthin concentration groups (F3; animals were supplied with 50 mg/kg bw/day fucoxanthin). A 14-day treatment was conducted for these animals. The levels of T4, T3, MDA, ascorbate peroxidase (APX) and catalase were measured, and the expression levels of Bax, Bcl-2, ERK1, ERK2, MEK1, eIf2α, p-eIf2α, GRP78 and GRP94 genes were determined using real-time reverse transcriptase-polymerase chain reactions (RT-PCR). In addition, tissue histopathology and ultrastructure were recorded and analysed. We found that the injection of cadmium chloride (CdCl2) decreased serum T4 and T3 levels to 27.10 ng/ml and 837.74 pg/ml, respectively. In addition, CdCl2 intoxication induced oxidative stress, structural abnormalities and apoptosis in thyroid follicles. Our results showed that the treatment of CaCl-exposed mice with 25-50 mg/kg bw/day fucoxanthin appreciably decreased oxidative stress and apoptosis induced by CdCl2 and restored the microstructural and ultrastructural organisations of the thyroid gland towards normalcy. Compared with the negative control group, fucoxanthin treatment groups showed significant increase in T4 and T3 levels (52.17 ng/ml and 1669.18 ng/ml, respectively; P < 0.05), relieved oxidative stress by decreasing malondialdehyde level and increasing catalase and APX levels and increased apoptosis inhibition through inhibiting the ERK1/2 pathway and preventing endoplasmic reticulum stress in thyroid follicular epithelial cells. Herein, our study provides evidence of the protective effects of fucoxanthin supplementation against thyroid damage and suggests therapeutic potential of this pigment in cases of Cd intoxication and hypothyroidism.


Assuntos
Cádmio , Glândula Tireoide , Animais , Antioxidantes , Cloreto de Cádmio , Bovinos , Chaperona BiP do Retículo Endoplasmático , Camundongos , Estresse Oxidativo , Ovinos , Suínos , Xantofilas
10.
Toxins (Basel) ; 11(3)2019 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-30857352

RESUMO

Jellyfish envenomations result in extensive dermatological symptoms, clinically named as jellyfish dermatitis, which can seriously affect the daily activities and physical health of people. Inflammatory response accompanies the whole process of jellyfish dermatitis and the complexity of jellyfish venom components makes it difficult to treat jellyfish dermatitis symptoms effectively. Moreover, inhibiting inflammation is essential for the treatment of jellyfish stings and exploring the main components of jellyfish venom that cause inflammation is an urgent research area. In this study, the inhibitory effects of matrix metalloproteinase (MMP) inhibitors for venom-induced inflammation were explored at a cellular level. The expression of the three inflammatory factors, IL-6, TNF-α and MCP-1 in two skin cell lines, human keratinocyte cells (HaCaT) and human embryonic skin fibroblasts cells (CCC-ESF-1), at the cellular level, after treatment with the inhibitors of jellyfish Nemopilema nomurai (N. nomurai) nematocyst venom (NnNV-I), were determined. The results showed that inhibitors of MMP can significantly reduce the toxic effects of jellyfish Nemopilema nomurai nematocyst venom (NnNV) to skin cells. The expression levels of the three inflammatory factors IL-6, MCP-1, and TNF-α in the cells were also significantly decreased, indicating that MMPs in jellyfish venom are probably vital factors leading to jellyfish dermatitis. This study is beneficial in the prevention and treatment of jellyfish stings.


Assuntos
Anti-Inflamatórios/farmacologia , Venenos de Cnidários/farmacologia , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz/farmacologia , Pele/citologia , Animais , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Fibroblastos/metabolismo , Humanos , Queratinócitos/metabolismo , Nematocisto/química , Cifozoários
11.
Pharm Biol ; 57(1): 29-37, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30676163

RESUMO

CONTEXT: Compounds to treat hypothyroidism in the absence of cardiac side effects are urgently required. In this regard, γ-aminobutyric acid (GABA) has gained interest due to its anti-anxiolytic, antihypertensive and antioxidant properties, and reported benefits to the thyroid system. OBJECTIVE: We investigated the ability of GABA to ameliorate fluoride-induced thyroid injury in mice, and investigated the mechanism(s) associated with GABA-induced protection. MATERIALS AND METHODS: Adult male Kumning mice (N = 90) were exposed to NaF (50 mg/kg) for 30 days as a model of hypothyroidism. To evaluate the effects of GABA administration, fluoride-exposed mice received either thyroid tablets, or low (25 mg/kg), medium (50 mg/kg) or high (75 mg/kg) concentrations of pure GABA orally for 14 days groups (N = 10 each). The effects of low (50 mg/kg); medium (75 mg/kg) and high (100 mg/kg) concentrations of laboratory-separated GABA were assessed for comparison. Effects on thyroid hormone production, oxidative stress, thyroid function-associated genes, and side-effects during therapy were measured. RESULTS: GABA supplementation in fluoride-exposed mice significantly increased the expression of thyroid TG, TPO, and NIS (P < 0.05), significantly improved the thyroid redox state (P < 0.05), modulated the expression of thyroid function-associated genes, conferred liver metabolic protection, and prevented changes to myocardial morphology, thus reducing side effects. Both pure and laboratory-separated GABA displayed comparative protective effects. DISCUSSION AND CONCLUSION: Our findings support the assertion that GABA exerts therapeutic potential in hypothyroidism. The design and use of human GABA trials to improve therapeutic outcomes in hypothyroidism are now warranted.


Assuntos
Antioxidantes/farmacologia , Hipotireoidismo/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia , Animais , Antioxidantes/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Camundongos , Oxirredução/efeitos dos fármacos , Fluoreto de Sódio/toxicidade , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/fisiopatologia , Ácido gama-Aminobutírico/administração & dosagem
12.
Int J Biol Macromol ; 108: 1310-1321, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29129634

RESUMO

To investigate the immunostimulatory effects of chitosan sulfates, we prepared α- and ß-chitosan sulfates with different molecular weights and compared their immunostimulatory activities in RAW 264.7 macrophages. Results suggest that ß-chitosan sulfates were more active than α-chitosan in promoting nitric oxide (NO) production. Further study show that ß-chitosan sulfate significantly promoted the production of NO, prostaglandin E2, tumor necrosis factor (TNF)-α, interleukin-6 and interleukin-1ß at the levels of transcription and translation. Moreover, Western blots revealed that it induced the phosphorylation of p85 and Akt, and the nuclear translocation of p50/p65 and c-Fos/c-Jun. The luciferase activity of cells pretreated with ß-chitosan sulfate further confirmed the nuclear translocation of p50/p65 and c-Fos/c-Jun. Determination of Toll-like receptor (TLR) 4 expression suggested that ß-chitosan sulfate at least partly bound to TLR4. In conclusion, ß-chitosan sulfates activate RAW 264.7 cells through the PI3K-Akt pathway, which is dependent on activator protein-1 and nuclear factor-κB activation.


Assuntos
Quitosana/química , Quitosana/farmacologia , Macrófagos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfatos/química , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Quitosana/metabolismo , Citocinas/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Peso Molecular , Óxido Nítrico/biossíntese , Células RAW 264.7 , Ativação Transcricional/efeitos dos fármacos
13.
Biochem Biophys Res Commun ; 491(1): 19-24, 2017 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-28687488

RESUMO

Fluorine poisoning affects human health all over the world and an urgent task is to develop alleviative medicine to recover or ameliorate the damages to the body. Here we studied the effects of gamma-aminobutyric acid (GABA), a liver protector reported previously, on fluoride-induced damage in the mouse liver. Through microscope imaging of the liver tissue, TUNEL immunostaining, real-time RT-PCR, enzyme immunoassay and colorimetric method, we found that GABA supplementation prevented the metabolic toxicity caused by fluoride treatment in mice. This detoxification was reflected by the reduced oxidative stress and apoptosis, enhanced neuron protection and liver function. Collectively, this study provided evidence of the beneficial effects of GABA supplement on liver damage, implicating its therapeutic potential in fluorosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Intoxicação por Flúor/tratamento farmacológico , Intoxicação por Flúor/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido gama-Aminobutírico/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Intoxicação por Flúor/patologia , Inativação Metabólica/efeitos dos fármacos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Resultado do Tratamento , Ácido gama-Aminobutírico/farmacologia
14.
Toxins (Basel) ; 9(2)2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28134758

RESUMO

BACKGROUND: Medusozoans utilize explosively discharging penetrant nematocysts to inject venom into prey. These venoms are composed of highly complex proteins and peptides with extensive bioactivities, as observed in vitro. Diverse enzymatic toxins have been putatively identified in the venom of jellyfish, Nemopilema nomurai and Cyanea nozakii, through examination of their proteomes and transcriptomes. However, functional examination of putative enzymatic components identified in proteomic approaches to elucidate potential bioactivities is critically needed. METHODS: In this study, enzymatic toxins were functionally identified using a combined approach consisting of in gel zymography and liquid chromatography tandem mass spectrometry (LC-MS/MS). The potential roles of metalloproteinases and lipases in hemolytic activity were explored using specific inhibitors. RESULTS: Zymography indicated that nematocyst venom possessed protease-, lipase- and hyaluronidase-class activities. Further, proteomic approaches using LC-MS/MS indicated sequence homology of proteolytic bands observed in zymography to extant zinc metalloproteinase-disintegrins and astacin metalloproteinases. Moreover, pre-incubation of the metalloproteinase inhibitor batimastat with N. nomurai nematocyst venom resulted in an approximate 62% reduction of hemolysis compared to venom exposed sheep erythrocytes, suggesting that metalloproteinases contribute to hemolytic activity. Additionally, species within the molecular mass range of 14-18 kDa exhibited both egg yolk and erythrocyte lytic activities in gel overlay assays. CONCLUSION: For the first time, our findings demonstrate the contribution of jellyfish venom metalloproteinase and suggest the involvement of lipase species to hemolytic activity. Investigations of this relationship will facilitate a better understanding of the constituents and toxicity of jellyfish venom.


Assuntos
Venenos de Cnidários/enzimologia , Eletroforese em Gel de Poliacrilamida , Hialuronoglucosaminidase/metabolismo , Lipase/metabolismo , Metaloproteases/metabolismo , Proteômica/métodos , Cifozoários/enzimologia , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Venenos de Cnidários/antagonistas & inibidores , Venenos de Cnidários/toxicidade , Relação Dose-Resposta a Droga , Hemólise/efeitos dos fármacos , Hialuronoglucosaminidase/química , Hialuronoglucosaminidase/isolamento & purificação , Hialuronoglucosaminidase/toxicidade , Lipase/química , Lipase/isolamento & purificação , Lipase/toxicidade , Metaloproteases/química , Metaloproteases/isolamento & purificação , Metaloproteases/toxicidade , Peso Molecular , Inibidores de Proteases/farmacologia , Carneiro Doméstico
15.
Toxicon ; 125: 1-12, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27826020

RESUMO

Jellyfish envenomations are emerging as an important public health concern occurred worldwide. In China, the situation is getting worse with numerous people stung by jellyfish Nemopilema nomurai (N. nomurai) and Cyanea nozakii (C. nozakii) in the summer. However, the proteinaceous mixtures in nematocysts responsible for the symptoms of jellyfish stings were scarcely characterized and understood in view of enzymatic constituents and toxicity. In the present study, enzymatic properties of jellyfish N. nomurai and C. nozakii nematocyst venom were analyzed biochemically and kinetically. The current data revealed that N. nomurai and C. nozakii nematocyst venom exhibited various enzymatic activities, of which metalloproteinases activity and PLA2s-like activity were predominant. Moreover, the catalytic activities of metalloproteinases and PLA2s-like were dependent on different physiochemical conditions such as temperature, pH and divalent ions. Kinetic profiling revealed their catalytic behaviors fitted the Michaelis-Menten equation under specific conditions. Findings suggested jellyfish nematocyst venom possessed diverse enzymatic constituents, which may underlie the extensively characterized bioactivities of jellyfish venom and human envenomations. Hence, our study will contribute to understanding the enzymatic constituents and toxicity of jellyfish nematocyst venom and may afford potential therapeutic targets for developing drugs for jellyfish stings.


Assuntos
Venenos de Cnidários/enzimologia , Cifozoários/enzimologia , Animais , Venenos de Cnidários/química , Fibrinogênio/química , Cinética , Metaloproteases/química , Metaloproteases/isolamento & purificação , Metaloproteases/metabolismo , Fosfolipases A2/química , Fosfolipases A2/isolamento & purificação , Fosfolipases A2/metabolismo
16.
PLoS One ; 10(12): e0144394, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26637162

RESUMO

Fungi isolated from marine invertebrates are of considerable importance as new promising sources of unique secondary metabolites with significant biomedical potential. However, the cultivable fungal community harbored in jellyfish was less investigated. In this work, we seek to recover symbiotic fungi from different tissues of jellyfish Nemopilema nomurai. A total of seven morphotypes were isolated, which were assigned into four genera (Aspergillus, Cladosporium, Purpureocillium, and Tilletiopsis) from two phyla (Ascomycota and Basidiomycota) by comparing the rDNA-ITS sequences with the reference sequences in GenBank. The most fungi were found in the inner tissues of subumbrella. Two of the cultivation-independent procedures, changing media type and co-cultivation, were employed to maximize the complexity of metabolites. Thus, thirteen EtOAc gum were obtained and fingerprinted by High Performance Liquid Chromatography (HPLC) equipped with a photodiode array (PDA) detector. Antibacterial and antifungal activities of these complex mixtures were tested against a panel of bacterial and fungal pathogens. The antimicrobial results showed that all of the 13 EtOAc extracts displayed different levels of antibacterial activity, three of which exhibited strong to significant antibacterial activity to the bacterial pathogens Staphylococcus aureus and Salmonella entrica. Antifungal activity indicated that the EtOAc extracts from pure culture of Aspergillus versicolor and co-culture of A. versicolor and Tilletiopsis sp. in rice media were promising for searching new compounds, with the maximal mycelial growth inhibition of 82.32% ± 0.61% for Rhizoctonia solani and 48.41% ± 11.02% for Botrytis cinerea at 200 µg/ml, respectively. This study is the first report on the antibacterial and antifungal activity of jellyfish-associated fungi and allows the first sight into cultivable fungal community residing in jellyfish. Induced metabolites by cultivation-dependent approaches provides a new reservoir for drug discovery from jellyfish-derived fungi.


Assuntos
Ascomicetos , Basidiomycota , Rhizoctonia/crescimento & desenvolvimento , Salmonella enterica/crescimento & desenvolvimento , Cifozoários/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Animais , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/isolamento & purificação , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/isolamento & purificação
17.
Toxins (Basel) ; 7(10): 3876-86, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26404374

RESUMO

The silkworm Bombyx mori L. (B. mori) has a significant impact on the economy by producing more than 80% of the globally produced raw silk. The exposure of silkworm to pesticides may cause adverse effects on B. mori, such as a reduction in the production and quality of silk. This study aims to assay the effect of venom from the jellyfish Nemopilema nomurai on growth, cuticle and acetylcholinesterase (AChE) activity of the silkworm B. mori by the leaf dipping method. The experimental results revealed that the four samples caused neither antifeeding nor a lethal effect on B. mori. The sample SFV inhibited B. mori growth after 6 days of treatment in a dose-dependent manner. The samples SFV, DSFV and Fr-1 inhibited the precipitation and synthesis of chitin in the cuticle after 12 and 14 days of treatment. In the case of the four samples, the AChE was significantly improved after 14 days of treatment.


Assuntos
Agentes de Controle Biológico/farmacologia , Bombyx/efeitos dos fármacos , Venenos de Cnidários/farmacologia , Cifozoários/química , Acetilcolinesterase/metabolismo , Animais , Agentes de Controle Biológico/isolamento & purificação , Agentes de Controle Biológico/toxicidade , Bombyx/enzimologia , Bombyx/crescimento & desenvolvimento , Venenos de Cnidários/isolamento & purificação , Venenos de Cnidários/toxicidade , Relação Dose-Resposta a Droga
18.
Toxicon ; 92: 60-5, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25305553

RESUMO

Jellyfish Stomolophus meleagris, a synonym of Nemopilema nomurai, which has often bloomed in the China Sea in recent years, is becoming an increasing threat to human health and life as a result of its strong toxicity. Each year, hundreds of thousands of people were stung, especially in the high season, and the victims suffered itch, edema, myalgia, dyspnea, hypotension, shock and even death. Here, we present the in-depth analysis of the in vivo toxicity of the venom from the jellyfish S. meleagris by using both an acute toxicological approach and pathological analyses. The venom showed an LD50 of approximately 2.92 µg/g body weight in mice following an intravenous injection and caused renal glomerular swelling, renal vesicle stricture, renal tubules dilatation, hepatic blood sinusoid dilatation, pulmonary edema and malignant pleural effusion. The pathological sections analysis showed that the kidney and liver were significantly damaged, but the heart, spleen and stomach had no observed changes. Additionally, the hemanalysis showed an increase of white blood cells (WBC), middle cells (Mid), alanine aminotransferase (ALT), blood urine nitrogen (BUN) and uric acid (UA) in the blood. Moreover, the mice also displayed convulsions, mouth bleeding, piloerection, dyspnea and death after the injection of the venom. In conclusion, this venom has a strong toxicity to the kidney of the mice and the acute renal failure might be one of the most important factors for the death after a severe sting. Hopefully, the present study will provide a significant reference for the treatment of stings by the jellyfish S. meleagris in the future.


Assuntos
Venenos de Cnidários/toxicidade , Glomérulos Renais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Fígado/efeitos dos fármacos , Neurotoxinas/toxicidade , Cifozoários/química , Alanina Transaminase/sangue , Animais , Nitrogênio da Ureia Sanguínea , China , Glomérulos Renais/patologia , Túbulos Renais/patologia , Dose Letal Mediana , Contagem de Leucócitos , Fígado/patologia , Camundongos , Oceanos e Mares , Ácido Úrico/sangue
19.
Biomed Res Int ; 2014: 315853, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25162008

RESUMO

Efficacy of venom from tentacle of jellyfish Stomolophus meleagris against the cotton bollworm Helicoverpa armigera was determined. Venom from tentacle of jellyfish Stomolophus meleagris could inhibit the growth of Helicoverpa armigera and the weight inhibiting rate of sample NFr-2 was 60.53%. Of the six samples, only NFr-2 had high insecticidal activity against Helicoverpa armigera and the corrected mortality recorded at 7 d was 74.23%.


Assuntos
Venenos de Cnidários/toxicidade , Inseticidas/toxicidade , Lepidópteros/efeitos dos fármacos , Animais , Venenos de Cnidários/química , Cifozoários/química
20.
J Proteomics ; 106: 17-29, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24747124

RESUMO

Jellyfish Stomolophus meleagris is a very dangerous animal because of its strong toxicity. However, the composition of the venom is still unclear. Both proteomics and transcriptomics approaches were applied in present study to investigate the major components and their possible relationships to the sting. The proteomics of the venom from S. meleagris was conducted by tryptic digestion of the crude venom followed by RP-HPLC separation and MS/MS analysis of the tryptic peptides. The venom gland transcriptome was analyzed using a high-throughput Illumina sequencing platform HiSeq 2000 with de novo assembly. A total of 218 toxins were identified including C-type lectin, phospholipase A2 (PLA2), potassium channel inhibitor, protease inhibitor, metalloprotease, hemolysin and other toxins, most of which should be responsible for the sting. Among them, serine protease inhibitor, PLA2, potassium channel inhibitor and metalloprotease are predominant, representing 28.44%, 21.56%, 16.06% and 15.14% of the identified venom proteins, respectively. Overall, our combined proteomics and transcriptomics approach provides a systematic overview of the toxins in the venom of jellyfish S. meleagris and it will be significant to understand the mechanism of the sting. BIOLOGICAL SIGNIFICANCE: Jellyfish Stomolophus meleagris is a very dangerous animal because of its strong toxicity. It often bloomed in the coast of China in recent years and caused thousands of people stung and even deaths every year. However, the components which caused sting are still unknown yet. In addition, no study about the venomics of jellyfish S. meleagris has been reported. In the present study, both proteomics and transcriptomics approaches were applied to investigate the major components related to the sting. The result showed that major component included C-type lectin, phospholipase A2, potassium channel inhibitor, protease inhibitor, metalloprotease, hemolysin and other toxins, which should be responsible for the effect of sting. This is the first research about the venomics of jellyfish S. meleagris. It will be significant to understand the mechanism of the biological effects and helpful to develop ways to deal with the sting.


Assuntos
Cifozoários/química , Transcriptoma , Peçonhas/química , Sequência de Aminoácidos , Animais , China , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Biblioteca Gênica , Geografia , Lectinas/química , Espectrometria de Massas , Dados de Sequência Molecular , Fosfolipases A2/química , Canais de Potássio/química , Estrutura Terciária de Proteína , Proteoma , Proteômica/métodos , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem , Tripsina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA