Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem ; 353: 129439, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33743430

RESUMO

Pu-erh tea is a post-fermentation tea with unique flavor and multiple health benefits. Due to the various microorganisms involved in the post-fermentation process, Pu-erh tea contains highly complex components, which have rich interactions with the gut microbiomes (GMs). Because the structure and homeostasis of GMs are closely related to human wellness and the various diseases progress, the beneficial effects of Pu-erh tea on GMs have a great potential for application in health care. However, there is no systematic summary of the bioactive components of Pu-erh tea, and their effects on the GMs. Here, we review the current studies on the effects of Pu-erh tea and its bioactive components on the structure of GMs as well as on health improvement, and further discuss the relevant quality indicators. This "components - function - indicators" clue will hopefully stimulate the standardization of Pu-erh tea fermentation process and the development of its functional products.


Assuntos
Microbioma Gastrointestinal , Chá/química , Animais , Colite/microbiologia , Colite/patologia , Flavonoides/química , Flavonoides/metabolismo , Flavonoides/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Obesidade/microbiologia , Obesidade/patologia , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Taninos/metabolismo , Taninos/farmacologia
2.
Carbohydr Polym ; 196: 398-404, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29891311

RESUMO

Origin and manufacturing process are key factors affecting the biological activities of chondroitin sulfate (CS), which can be utilized as a nutraceutical in dietary supplements. Herein, we extracted and purified CS from the cartilage of artificially breeding Andrias davidianus (ADCS), i.e., Chinese giant salamander (CGS), one of the prospective functional food source materials in China. Low molecular weight CS (LMWADCS) was then prepared by free radical depolymerization of ADCS. High-performance gel permeation chromatography (HPGPC) analysis showed that the average molecular weight (Mw) of ADCS was 49.2 kDa, while the Mw of LMWADCS was 6.4 kDa. After the eliminative degradation of ADCS by chondroitinase ABC, strong anion-exchange high-performance liquid chromatography (SAX-HPLC) analysis showed that the disaccharide composition of ADCS was 14.6% ΔDi0S, 60.9% ΔDi6S and 24.5% ΔDi4S. Then, in vitro antioxidant assays were performed with ADCS, LMWADCS and CS from a commercial source. Our results showed that LMWADCS exerted the highest total antioxidant activity out of the total antioxidant capacity, including the capacity of scavenging DPPH radicals, hydroxyl radicals and superoxide anion radicals. From the results of this study, we can conclude that the Mw and composition of ADCS are different from those reported for bovine and shark CS, and LMWADCS can be utilized as a valuable and potential nutraceutical for the functional food industry.

3.
Bioengineered ; 7(6): 395-405, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27537049

RESUMO

Xanthine dehydrogenase (EC 1.17.1.4, XDH) is a typical and complex molybdenum-containing flavoprotein which has been extensively studied for over 110 years. This enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and sometimes can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor. XDHs are widely distributed in all eukarya, bacteria and archaea domains, and are proposed to play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts. The recent applications of XDHs include clinical detections of xanthine and hypoxanthine content in body fluidics, and other diagnostic biomarkers like inorganic phosphorus, 5'-nucleotidase and adenosine deaminase. XDHs can also find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin. In this commentary, we would outline the latest knowledge on occurrence, structure, biosynthesis, and recent advances of production and applications of XDH, and highlighted the need to develop XDHs with improved performances by gene prospecting and protein engineering, and protocols for efficient production of active XDHs in response to the increasing demands.


Assuntos
Xantina Desidrogenase/metabolismo , 5'-Nucleotidase/metabolismo , Adenosina Desaminase/metabolismo , Aldeídos/metabolismo , Animais , Biodegradação Ambiental , Humanos , Óxido Nítrico/metabolismo , Oxirredução , Fósforo/metabolismo , Pterinas/metabolismo , Purinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ribavirina/metabolismo , Xantina Desidrogenase/genética , Xantina Oxidase/metabolismo
4.
Enzyme Microb Technol ; 48(1): 100-5, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22112777

RESUMO

We report a novel enzyme-involved approach to improve the extraction of flavonoids from Ginkgo biloba, in which the enzyme is employed not only for cell wall degradation, but also for increasing the solubility of target compounds in the ethanol-water extractant. Penicillium decumbens cellulase, a commercial cell wall-degrading enzyme with high transglycosylation activity, was found to offer far better performance in the extraction than Trichoderma reesei cellulase and Aspergillus niger pectinase under the presence of maltose as the glycosyl donor. TLC, HPLC and MS analysis indicated that P. decumbens cellulase could transglycosylate flavonol aglycones into more polar glucosides, the higher solubility of which led to improved extraction. The influence of glycosyl donor, pH, solvent and temperature on the enzymatic transglycosylation was investigated. For three predominant flavonoids in G. biloba, the transglycosylation showed similar optimal conditions, which were therefore used for the enzyme-assisted extraction. The extraction yield turned to be 28.3mg/g of dw, 31% higher than that under the pre-optimized conditions, and 102% higher than that under the conditions without enzymes. The utilization of enzymatic bifunctionality described here, naming enzymatic modification of target compounds and facilitation of cell wall degradation, provides a novel approach for the extraction of natural compounds from plants.


Assuntos
Celulase/metabolismo , Flavonoides/isolamento & purificação , Ginkgo biloba/química , Penicillium/enzimologia , Folhas de Planta/química , Tecnologia Farmacêutica/métodos , Flavonoides/química , Flavonóis/química , Ginkgo biloba/metabolismo , Glicosilação , Folhas de Planta/metabolismo , Plantas Medicinais/química , Plantas Medicinais/metabolismo
5.
Chemosphere ; 72(2): 290-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18395769

RESUMO

Phosphorus removal from wastewater is of great importance. In the present study, ferric chloride was selected as the coagulant, and tannic acid (TA), a natural polymer, as the coagulant aid to develop an effective coagulation process with the emphasis of phosphorus recovery from different types of wastewater. The results showed that TA can accelerate the settling speed by forming flocs with large size, reduce the residual Fe(III) to eliminate the yellow color caused by Fe(III), and slightly increase the phosphorus removal efficiency. The precipitate formed by TA-aided coagulation showed the advantage of releasing phosphorus faster than ferric phosphate, indicating the possibility of phosphorus recovery from wastewater as slow release fertilizer. To further understand the structural characteristics of the precipitate, analytical techniques such as Raman spectroscopy, X-ray photoelectron spectroscopy and matrix-assisted laser desorption ionization-time of flight mass spectrometry were employed. The analytical results indicated that TA-Fe-P complex was formed during the coagulation/flocculation processes. Solid phase in the precipitate consisted of TA-Fe-P complex, Fe-TA complex and/or ferric hydroxyphosphate.


Assuntos
Compostos Férricos/química , Fósforo/isolamento & purificação , Taninos/química , Purificação da Água/métodos , Cloretos , Estrutura Molecular , Fósforo/química , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA