Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 25(12): 1937-1944, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37786335

RESUMO

The formation and sedimentation of oil-mineral aggregates (OMAs) is the major method to transport spilled oil to the seafloor. In this study, the formation and sedimentation experiments of OMA using montmorillonite and four crude oils were performed in a wave tank in the presence of chemical dispersant. Most of the formed OMAs were droplet OMAs, and single droplet OMA would aggregate into multiple ones under the action of the dispersant. The size of the oil droplets trapped in the OMA increased with time and was larger for the oil with higher viscosity. The sinking velocities of OMAs formed in this study were between 100-1200 µm s-1 and they were positively correlated with their diameter. The density of OMA was of the same order as that of the crude oil that formed them. An increase in the dispersant dosage could promote the formation of OMAs. The oil content in OMAs was higher for the denser oil in the presence of a dispersant. The maximum oil trapping efficiency of OMAs was 48.05%. This study provides fundamental data on the formation kinetics of OMAs.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Óleo Mineral , Sedimentos Geológicos/química , Poluição por Petróleo/análise , Bentonita/química
2.
Mar Pollut Bull ; 195: 115542, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37714077

RESUMO

Recently, the fate of spilled oil in the presence of microplastics (MPs) in the sea has attracted attention of researchers. Merey crude oil and polyethylene terephthalate (PET) were used as the experimental materials in this study. The effects of mixing energy and dispersant dosage on oil dispersion and sedimentation in the presence of MPs in the water column were investigated by laboratory experiments simulating actual sea conditions. The increase of mixing energy showed a promoting effect on oil dispersion. When the oscillation frequency increased from 140 rpm to 180 rpm, the oil dispersion efficiency (ODE) ranged from 2.1 %-3.7 % to 17.4 %-30.8 %, and the volumetric mean diameter (VMD) of the suspended oil droplets/MPs-oil agglomerates (MOA) decreased from 99.9-131.4 µm to 76.6-88.2 µm after 2 h oscillation. The application of chemical dispersant led to an increase in both the quantity and size of the formed sunken MPs-oil-dispersant agglomerates (MODA). At the dispersant-to-oil ratio (DOR) of 1:5, the ODE declined from 77.7 % to 62.6 % when the MPs concentration increased from 0 to 150 mg/L, while the oil sinking efficiency (OSE) rose from 3.4 % to 15.6 % when the MPs increased from 25 to 150 mg/L; the maximum size of the sunken MODA reached 13.0 mm, and the total volume of the MODA formed per unit volume oil reached 389.7 µL/mL oil at the MPs concentration of 150 mg/L. Meanwhile, the results showed that the presence of MPs inhibited the oil dispersion by increasing the oil-water interfacial tension. The outcomes of this work may provide assistance in predicting the transport of spilled oil and developing emergency measures.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Microplásticos , Plásticos , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise , Água
3.
Environ Sci Process Impacts ; 25(9): 1438-1448, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37424387

RESUMO

After an oil spill, the formation of oil-particle aggregates (OPAs) is associated with the interaction between dispersed oil and marine particulate matter such as phytoplankton, bacteria and mineral particles. Until recently, the combined effect of minerals and marine algae in influencing oil dispersion and OPA formation has rarely been investigated in detail. In this paper, the impacts of a species of flagellate algae Heterosigma akashiwo on oil dispersion and aggregation with montmorillonite were investigated. This study has found that oil coalescence is inhibited due to the adhesion of algal cells on the droplet surface, causing fewer large droplets to be dispersed into the water column and small OPAs to form. Due to the role of biosurfactants in the algae and the inhibition of algae on the swelling of mineral particles, both the oil dispersion efficiency and oil sinking efficiency were improved, which reached 77.6% and 23.5%, respectively at an algal cell concentration (Ca) of 1.0 × 106 cells per mL and a mineral concentration of 300 mg L-1. The volumetric mean diameter of the OPAs decreased from 38.4 µm to 31.5 µm when Ca increased from 0 to 1.0 × 106 cells per mL. At higher turbulent energy, more oil tended to form larger OPAs. The findings may add knowledge about the fate and transport of spilled oil and provide fundamental data for oil spill migration modelling.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Petróleo/análise , Poluentes Químicos da Água/análise , Material Particulado/análise , Sedimentos Geológicos , Poluição por Petróleo/análise , Minerais
4.
J Environ Manage ; 341: 118110, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150165

RESUMO

The dispersion process of spilled oil is an important concern for the effective disposal of oil spills. The dispersed oil concentration and oil droplets size distribution were studied through a wave tank test under the application of chemical dispersant and suspended minerals. The results indicated that dispersant and minerals increased the dispersed oil concentration and the effect of dispersant was more significant, and they had a synergistic effect on oil dispersion. When dispersant and minerals were applied together, the volume mean diameter of oil droplets decreased in the first 30 min, then increased and reached a maximum value at 90-120 min, and decreased again. Moreover, suspended minerals could inhibit the coalescence of oil droplets. This study can afford data support for oil spill emergency response that occurs in inshore or estuaries.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Minerais
5.
J Hazard Mater ; 436: 129227, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739747

RESUMO

The formation of oil-particle aggregates (OPA) is the major sedimental pathway of spilled oil, which can bring great harm to both the benthic communities and marine environment. In this paper, effects of GM-2 chemical dispersant and oil properties on the formation of OPA was investigated by the EPA baffled flask test. The addition of dispersant can promote the formation of OPA from montmorillonite and five test oils obviously. With the increase of the dispersant dosage, the size of trapped oil in OPA increased and the density of OPA decreased. The dispersant can increase the kinematic viscosity of crude oil, and high viscosity of the oil is advantageous for the formation of OPA. The oil-seawater interfacial tension is reduced after the addition of dispersant, which makes oil dispersed into the water column easier. A kinematic equation of dispersed oil concentration attenuation was modified by introducing the oil property coefficient ß. The modified empirical equation can calculate the mass of oil in sunken OPA in oil spill accidents.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Óleos , Poluição por Petróleo/análise , Água do Mar , Tensoativos/química , Poluentes Químicos da Água/química
6.
Environ Sci Pollut Res Int ; 29(20): 30496-30506, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35000158

RESUMO

After oil spills occur, dispersed oil droplets can collide with suspended particles in the water column to form the oil-mineral aggregate (OMA) and settle to the seafloor. However, only a few studies have concerned the effect of chemical dispersant on this process. In this paper, the mechanism by which dispersant affects the surface properties of kaolin and the viscosity and oil-seawater interfacial tension (IFTow) of Roncador crude oil were separately investigated by small-scale tests. The results indicated that the presence of dispersant impairs the zeta potential and enhances the hydrophobicity of kaolin. The viscosity of Roncador crude oil rose slightly as the dosage of dispersant increased, while IFTow decreased significantly. Furthermore, the oil dispersion and OMA formation at different dispersant-to-oil ratio (DOR) were evaluated in a wave tank. When DOR was less than 1:40, the effect of dispersant on the dispersion of spilled oil was not obvious. With the increasing DOR, the effect became more pronounced, and the adhesion between oil droplets and kaolin was inhibited. The size ratio between oil droplets and particles is the significant factor for OMA formation. The closer the oil-mineral size ratio is to 1, the more difficultly the OMA forms.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Caulim , Poluição por Petróleo/análise , Propriedades de Superfície , Tensoativos/química , Poluentes Químicos da Água/análise
7.
Neuroreport ; 33(1): 33-42, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34874327

RESUMO

OBJECTIVES: Spinal cord injury (SCI) is a disastrous central nervous system (CNS) disorder, which was intimately associated with oxidative stress. Studies have confirmed that Iridoids Effective Fraction of Valeriana jatamansi Jones (IEFV) can scavenge reactive oxygen species. This study aimed to confirm the efficacy of IEFV in ameliorating SCI. METHODS: For establish the SCI model, the Sprague-Dawley rats underwent a T10 laminectomy with transient violent oppression by aneurysm clip. Then, the rats received IEFV intragastrically for 8 consecutive weeks to evaluate the protective effect of IEFV on motor function, oxidative stress, inflammation and neurotrophic factors in SCI rats. RESULTS: Basso, Beattie and Bresnahan scores, hematoxylin and eosin (H&E) staining and transmission electron microscopy experiments found IEFV protected motor function and alleviated neuron damage. Meanwhile, IEFV treatment decreased the release of malondialdehyde, interleukin-6 (IL-6), cyclooxygenase-2 and tumor necrosis factor-α. Moreover, IEFV treatment elevated the expression levels of brain-derived neurotrophic factor and nerve growth factor of SCI rats. Finally, administration of IEFV significantly inhibited the expression of p-p65 and toll-like receptor 4 (TLR4). CONCLUSIONS: This study suggests that IEFV could attenuate the oxidative stress and inflammatory response of the spinal cord after SCI, which was associated with inhibition of the TLR4/nuclear factor-kappaB signaling pathway.


Assuntos
Atividade Motora/efeitos dos fármacos , Extratos Vegetais/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/patologia , Medula Espinal/efeitos dos fármacos , Animais , Feminino , Sequestradores de Radicais Livres/farmacologia , Iridoides/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia , Valeriana
8.
Mar Pollut Bull ; 168: 112455, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34020408

RESUMO

Oil-sediment aggregation is an important transport and transformation process of spilled oil, which has been considered as a pathway of spill remediation. This work focused on the individual performance of dispersed oil and sediment during the aggregation process. Dispersion of three oils was first tested and validated in a water tank. An approach of estimating the mass variation of the sediment that has participated in forming the oil-sediment aggregates (OSAs) has been developed by density analysis. Results indicated that the density of the formed OSAs increases during the aggregation. In the context of remediation, it takes longer for sediment to reach equilibrium than for dispersed oil, especially under high mixing energy at a large sediment concentration, which results in the formation of dense OSAs, as well as high aggregation degree and rate. Roncador oil possesses a relatively high capability of capturing sediment to form dense OSAs, especially at an initial sediment concentration of over 150 mg/L. Oil sinking efficiency and the characteristic change rate of aggregated oil mass seem to be proportional to oil dispersion efficiency, and decrease with the mean size of dispersed oil droplets. The process of aggregation can further promote the dispersion of oil into water column. This study also provides fundamental data for the formation kinetics of OSAs.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Sedimentos Geológicos , Cinética , Óleos , Material Particulado/análise , Petróleo/análise , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise
9.
Artigo em Inglês | MEDLINE | ID: mdl-33477823

RESUMO

Currently, global climate change and oil pollution are two main environmental concerns for sea cucumber (Apostichopus japonicus) aquaculture. However, no study has been conducted on the combined effects of elevated temperature and oil pollution on sea cucumber. Therefore, in the present study, we treated sea cucumber with elevated temperature (26 °C) alone, water-accommodated fractions (WAF) of Oman crude oil at an optimal temperature of 16 °C, and Oman crude oil WAF at an elevated temperature of 26 °C for 24 h. Results showed that reactive oxygen species (ROS) level and total antioxidant capacity in WAF at 26 °C treatment were higher than that in WAF at 16 °C treatment, as evidenced by 6.03- and 1.31-fold-higher values, respectively. Oxidative damage assessments manifested that WAF at 26 °C treatment caused much severer oxidative damage of the biomacromolecules (including DNA, proteins, and lipids) than 26 °C or WAF at 16 °C treatments did. Moreover, compared to 26 °C or WAF at 16 °C treatments, WAF at 26 °C treatment induced a significant increase in cellular apoptosis by detecting the caspase-3 activity. Our results revealed that co-exposure to elevated temperature and crude oil could simulate higher ROS levels and subsequently cause much severer oxidative damage and cellular apoptosis than crude oil alone on sea cucumber.


Assuntos
Poluição por Petróleo/efeitos adversos , Petróleo/toxicidade , Pepinos-do-Mar/efeitos dos fármacos , Stichopus/efeitos dos fármacos , Temperatura , Poluentes Químicos da Água/toxicidade , Animais , Apoptose , Omã , Estresse Oxidativo , Stichopus/classificação , Stichopus/fisiologia
10.
Sci Total Environ ; 763: 143053, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129528

RESUMO

To further understand the underlying mechanisms involved in the developmental toxicity of crude oil and chemically dispersed crude oil on fish early-life stages (ELS), zebrafish (Danio rerio) embryos were exposed to GM-2 chemical dispersant (DISP), low-energy water-accommodated fractions (LEWAF), and chemically enhanced WAF (CEWAF) of Merey crude oil at sublethal concentrations for 120 h. We employed the General Morphology Score (GMS) and General Teratogenic Score (GTS) systems in conjunction with high-throughput RNA-Seq analysis to evaluate the phenotypic and transcriptomic responses in zebrafish ELS. Results showed that ΣPAHs concentrations in LEWAF and CEWAF solutions were 507.63 ± 80.95 ng·L-1 and 4039.51 ± 241.26 ng·L-1, respectively. The GMS and GTS values indicated that CEWAF exposure caused more severe developmental delay and higher frequencies of teratogenic effects than LEWAF exposure. Moreover, no significant change in heart rate was observed in LEWAF treatment, while CEWAF exposure caused a significant reduction in heart rate. LEWAF and CEWAF exposure exhibited an overt change in eye area, with a reduction of 4.0% and 25.3% (relative to the control), respectively. Additionally, no obvious impact on phenotypic development was observed in zebrafish embryo-larvae following DISP exposure. Significant changes in gene expression were detected in LEWAF and CEWAF treatments, with a total of 957 and 2062 differentially expressed genes (DEGs), respectively, while DISP exposure altered only 91 DEGs. Functional enrichment analysis revealed that LEWAF and CEWAF exposure caused significant perturbations in the pathways associated with phototransduction, retinol metabolism, metabolism of xenobiotics by cytochrome P450, and immune response-related pathways. Our results provide more valid evidence to corroborate the previous suggestion that ocular impairment is an equal or possibly more sensitive biomarker than cardiotoxicity in fish ELS exposed to oil-derived PAHs. All these findings could gain further mechanistic insights into the effects of crude oil and chemical dispersant on fish ELS.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Petróleo/toxicidade , Poluição por Petróleo/efeitos adversos , Transcriptoma , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
11.
Mar Pollut Bull ; 153: 110957, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32275521

RESUMO

After spill, the dispersed oil droplets may collide with suspended particulate matter in the water column to form oil-particle aggregates (OPAs) in turbulent environments. It may be an effective pathway to stabilize the oil by taking advantage of the particulate matter to clean up the contaminated waters. A theoretical model in Payne et al. (2003) is adopted to describe the oil-particle aggregation, and a solution method is proposed and validated against a group of experiments. The effect of the particle size and mass concentration on the aggregation has been examined quantitatively in detail. The particles and the oil droplets are consumed at a fixed ratio. Under the same mass concentration, smaller particles can trap more oil droplets, while larger particles tend to interact more quickly with the oil. The oil-particle aggregation rate and the oil trapping efficiency mainly depend on the particle concentration. The theoretical model is applied to predict the decrease of the dispersed oil in nearshore environments, based on the parameters obtained from the experiments. It is efficient to promote the oil-particle aggregation by increasing the particle concentration in the closed bay. In the open sea, the decrease of the dispersed oil can be effectively enhanced by increasing the particle concentration when it is below 0.50 kg/m3. The information presented in this paper can serve to predict the fate of the dispersed oil in coastal waters and provide technical support for oil spill management strategies.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Tamanho da Partícula , Material Particulado
12.
Mar Pollut Bull ; 148: 66-74, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31422305

RESUMO

Floating oil and sediments can interact to form oil-particle aggregates (OPAs) in marine environments. Laboratory batch experiments were conducted to investigate the effects of the concentration and size of sediment, temperature, oil types and chemical dispersant on the formation of OPAs. The results showed that the mass of OPAs and oil-particle aggregation rate are mainly related to the sediment concentration. Under the same mass concentration, more oil droplets can be trapped by smaller particles. Nevertheless, larger particles tend to interact more quickly with oil droplets. The effect of temperature on the formation of OPAs is substantially attributed to its influence on oil viscosity, and there is a threshold for oil viscosity which will bring about the maximum OPAs. Spilled oil with a high asphaltene can interact more effectively with the sediments. Appropriate addition of chemical dispersant is favorable for the formation of OPAs while excess addition will inhibit it.


Assuntos
Petróleo/análise , Tensoativos/química , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Tamanho da Partícula , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos , Tensoativos/análise , Temperatura , Viscosidade , Poluentes Químicos da Água/química
13.
Chemosphere ; 235: 423-433, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31272002

RESUMO

The present study investigated the developmental toxicity of water-accommodated fractions (WAFs) of Oman crude oil (OCO) and Merey crude oil (MCO) on zebrafish (Danio rerio) in early-life stages (ELS). Based on total petroleum hydrocarbons (TPH), LC50 values manifested that OCO WAF was 1.2-fold more lethal to zebrafish embryos than MCO WAF. As for hatching rate, EC50 value for OCO WAF was 5.7-fold lower than that for MCO WAF. To evaluate the sublethal morphological effects, semi-quantitative extended general morphological score (GMS) and general teratogenic score (GTS) systems were adopted. The GMS and GTS scores indicated that the WAFs caused remarkable developmental delay and high frequencies of malformation in a dose-dependent manner. Additionally, OCO and MCO WAFs exposure exhibited severe bradycardia (reduced heart rate) and overt reduction of stroke volume, with a concomitant decrease in the cardiac output. Meanwhile, the WAFs also induced dose-dependent down-regulated expressions of several key functional genes of excitation-contraction coupling in cardiomyocytes, including ryr2, atp2a2a, atp2a2b, ncx1h, and kcnh2. For key gene markers of swim bladder development, results showed that high dose of TPH induced significant down-regulation of hb9 and anxa5 with no obvious change of acta2, suggesting that the WAFs could affect the specification and development of epithelium and outer mesothelium of swim bladder in zebrafish ELS. A strong negative relationship between the failure of swim bladder inflation and cardiac dysfunction via cardiac output was found. All these findings provide novel insights into the complicated mechanisms of the developmental toxicity of crude oil on fish in ELS.


Assuntos
Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Omã , Organogênese , Poluição por Petróleo , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/crescimento & desenvolvimento , Água , Poluentes Químicos da Água/análise , Peixe-Zebra/crescimento & desenvolvimento
14.
Environ Sci Process Impacts ; 20(10): 1404-1413, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30183053

RESUMO

The unsourced oil contamination on the coast of Bohai Sea has recently attracted scholars to study the formation of sunken and suspended oils (SSO) from oil slicks on the sea surface. In this research, batch experiments have been conducted to study the time-scale effect of the different concentrations of suspended sediments on the formation of sunken oils and suspended oils using three oils (Oman crude oil, Merey crude oil, and 380# fuel oil) and two sediments (sand and silt) at different temperatures. The results showed that the sunken and suspended oils formed quickly within the mixing time and reached a maximum at the equilibrium time, te, and that te had a wide range of variation with sediment concentration and type. The oil sinking and submerging efficiency could reach up to 6.33%, 43.82% and 44.44% for 380# fuel oil, Oman crude oil and Merey crude oil, respectively. It is noted that the increase in sediment concentration and environmental temperature could enhance the formation of SSO but that it had a close relationship with the oil type. Overall, hydrophobic sand had a significantly higher oil sedimentation effect than silt.


Assuntos
Sedimentos Geológicos , Poluição por Petróleo , Petróleo/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , China , Oceano Pacífico , Temperatura
15.
Bull Environ Contam Toxicol ; 101(3): 314-319, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30105540

RESUMO

This study focused on comparing the lethal and sublethal toxicity of water-accommodated fractions (WAF) and chemically enhanced WAF (CEWAF) of crude oil to zebrafish (Danio rerio) on early life stages (ELS). Results showed that the addition of GM-2 dispersant caused an increase in the levels of total petroleum hydrocarbons (TPHs) and total priority polycyclic aromatic hydrocarbons (ΣPAHs). Based on ΣPAHs, the LC20 estimates for WAF and CEWAF were 4.88 µg L-1 and 1.19 µg L-1, respectively, indicating that CEWAF was approximately four times more toxic. CEWAF exposure caused markedly lower hatching rates and higher malformation frequencies than WAF. Meanwhile, the general morphology score (GMS) values in CEWAF were about fourfold lower than that in WAF, indicating that CEWAF exposure induced more significant developmental delay. The results suggested that chemical dispersant enhanced the toxicity of crude oil to zebrafish on ELS and its application could increase the exposure of fishes to crude oil.


Assuntos
Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Omã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA