Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 144: 90-98, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959158

RESUMO

Hydrogen sulfide gas (H2S) has protective effects in the cardiovascular system that includes preventing the development of atherosclerosis when tested in several in vivo models. Plaque instability is a major risk factor for thromboembolism, myocardial infarction, and stroke, so we examined if H2S can promote plaque stability and the potential underlying mechanisms. Apolipoprotein E knockout mice fed an atherogenic diet were administered the exogenous H2S donor sodium hydrosulfide (NaHS) or pravastatin as a positive control daily for 14 weeks. NaHS significantly enhanced plaque stability by increasing fibrous cap thickness and collagen content compared to vehicle-treated controls. NaHS treatment also reduced blood lipid levels and plaque formation. Preservation of plaque stability by NaHS was associated with reductions in vascular smooth muscle cells (VSMCs) apoptosis and expression of the collagen-degrading enzyme matrix metallopeptidase-9 (MMP-9) in plaque. While pravastatin also increased fibrous cap thickness and reduced VSMC apoptosis, but did not enhance plaque collagen or reduce MMP-9 significantly, suggesting distinct mechanisms of plaque stabilization. in vitro, NaHS also decreased MMP-9 expression in macrophages stimulated with tumor necrosis factor-α by inhibiting ERK/JNK phosphorylation and activator protein 1 nuclear translocation. Moreover, H2S reduced caspase-3/9 activity, Bax/Bcl-2 ratio, and LOX-1 mRNA expression in VSMCs stimulated with oxidized low-density lipoprotein. These results suggest that H2S enhances plaque stability and protects against atherogenesis by increasing plaque collagen content and VSMC count. In conclusion, H2S exerts protective effects against atherogenesis at least partly by stabilizing atherosclerotic plaque.


Assuntos
Sulfeto de Hidrogênio/uso terapêutico , Músculo Liso Vascular/efeitos dos fármacos , Placa Aterosclerótica/tratamento farmacológico , Sulfetos/uso terapêutico , Animais , Anticolesterolemiantes/uso terapêutico , Apolipoproteínas E/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/efeitos dos fármacos , Placa Aterosclerótica/genética , Pravastatina/uso terapêutico , Ratos Wistar
2.
Biochim Biophys Acta ; 1830(4): 2861-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23328493

RESUMO

BACKGROUND: Heme oxygenase-1 (HO-1) has potential anti-apoptotic properties. A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2- ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)] was synthesized by joining danshensu and cysteine through an appropriate linker. This study investigated if the cytoprotective properties of DSC involved the induction of HO-1. METHODS: We evaluated the cytoprotective effects of DSC on H2O2-induced cell damage, apoptosis, intracellular and mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm) loss, and apoptosis-related proteins expression and its underlying mechanisms. RESULTS: DSC concentration-dependently attenuated cell death, lactate dehydrogenase release, intracellular and mitochondrial ROS production, and ΔΨm collapse, modulated apoptosis-related proteins (Bcl-2, Bax, caspase-3, p53, and cleaved PARP) expression, and inhibited phosphorylation of extracellular signal-regulated kinase 1/2 in SH-SY5Y cells induced by H2O2. In addition, DSC concentration-dependently induced HO-1 expression associated with nuclear translocation of nuclear factor-erythroid 2 related factor 2 (Nrf-2), while the effect of DSC was inhibited by a phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Furthermore, the protective effect of DSC on H2O2-induced cell death was abolished by HO-1 inhibitor ZnPP, but was mimicked by carbon monoxide-releasing moiety CORM-3 or HO-1 by-product bilirubin. Finally, DSC inhibited H2O2-induced changes of Bcl-2, Bax, and caspase-3 expression, and all of these effects were reversed by HO-1 silencing. CONCLUSIONS: Induction of HO-1 may be, at least in part, responsible for the anti-apoptotic property of DSC, an effect that involved the activation of PI3K/Akt/Nrf-2 axis. GENERAL SIGNIFICANCE: DSC might have the potential for beneficial therapeutic interventions for neurodegenerative diseases.


Assuntos
Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Heme Oxigenase-1/biossíntese , Lactatos/farmacologia , Fenilacetatos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA