Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioelectromagnetics ; 41(4): 289-297, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32220027

RESUMO

Monascus purpureus is used to yield edible pigments accompanied by mycotoxin-citrinin. A low-frequency (<300 Hz) magnetic field (LF-MF) affects microbial metabolism. The link of LF-MF with secondary metabolites and intracellular and extracellular Na+ levels in M. purpureus was determined. The fermentation broth was exposed to LF-MF during the first 2 days of fermentation and continuously cultured at 30°C and 200 rpm until the 8th day of fermentation. Results showed that LF-MF treatments didn't affect the growth of M. purpureus in liquid-state fermentation. Compared with the control, citrinin production showed a decrease of 45.0%, while yellow, red, and orange pigment production showed an increase of 72.9, 73.9, and 40.1%, respectively, with LF-MF treatment of 1.6 mT. This was in agreement with downregulation of pksCT and ctnA, and upregulation of pksPT, pigR, veA, and laeA at the transcriptional level. Moreover, 1.6 mT LF-MF exposure caused the transfer of Na+ from extracellular to intracellular, which was validated through the upregulation of transmembrane sensor synthesis genes and the changes in the relative expression levels of the P-type ATPase and protein phosphatase genes. This study established that LF-MF could inhibit citrinin and stimulate pigment production and change intracellular and extracellular Na+ concentrations. Bioelectromagnetics. 2020;41:289-297 © 2020 Bioelectromagnetics Society.


Assuntos
Citrinina/biossíntese , Campos Magnéticos , Monascus/metabolismo , Sódio/metabolismo , Fermentação , Regulação Fúngica da Expressão Gênica , Monascus/genética , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Metabolismo Secundário
2.
Toxins (Basel) ; 11(2)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30769930

RESUMO

Applications of beneficial secondary metabolites produced by Monascus purpureus (M. purpureus) could be greatly limited for citrinin, a kidney toxin. The link of NaCl with cell growth and secondary metabolites in M. purpureus was analyzed with supplementations of different concentrations of NaCl in medium. The content of citrinin was reduced by 48.0% but the yellow, orange, red pigments and monacolin K productions were enhanced by 1.7, 1.4, 1.4 and 1.4 times, respectively, compared with those in the control using NaCl at 0.02 M at the 10th day of cultivation. NaCl didn't affect the cell growth of M. purpureus. This was verified through the transcriptional up-regulation of citrinin synthesis genes (pksCT and ctnA) and the down-regulation of the Monascus pigments (MPs) synthesis genes (pksPT and pigR). Moreover, the reactive oxygen species (ROS) levels were promoted by NaCl at the 2nd day of cultivation, and then inhibited remarkably with the extension of fermentation time. Meanwhile, the activities of superoxide dismutase (SOD) and catalase (CAT), and the contents of total glutathione (T-GSH) were significantly enhanced in the middle and late stages of cultivation. The inhibition effect on colony size and the growth of aerial mycelia was more obvious with an increased NaCl concentration. Acid and alkaline phosphatase (ACP and AKP) activities dramatically increased in NaCl treatments. NaCl could participate in secondary metabolites synthesis and cell growth in M. purpureus.


Assuntos
Citrinina/antagonistas & inibidores , Lovastatina/metabolismo , Monascus/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Cloreto de Sódio/farmacologia , Fosfatase Ácida/metabolismo , Fosfatase Alcalina/metabolismo , Catalase/metabolismo , Citrinina/metabolismo , Fermentação , Glutationa/metabolismo , Monascus/crescimento & desenvolvimento , Monascus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Metabolismo Secundário/efeitos dos fármacos , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA