Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Metab ; 80: 101886, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246589

RESUMO

OBJECTIVE: The central melanocortin system is essential for the regulation of food intake and body weight. Agouti-related protein (AgRP) is the sole orexigenic component of the central melanocortin system and is conserved across mammalian species. AgRP is currently known to be expressed exclusively in the mediobasal hypothalamus, and hypothalamic AgRP-expressing neurons are essential for feeding. Here we characterized a previously unknown population of AgRP cells in the mouse hindbrain. METHODS: Expression of AgRP in the hindbrain was investigated using gene expression analysis, single-cell RNA sequencing, immunofluorescent analysis and multiple transgenic mice with reporter expressions. Activation of AgRP neurons was achieved by Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and by transcranial focal photo-stimulation using a step-function opsin with ultra-high light sensitivity (SOUL). RESULTS: AgRP expressing cells were present in the area postrema (AP) and the adjacent subpostrema area (SubP) and commissural nucleus of the solitary tract (cNTS) of the mouse hindbrain (termed AgRPHind herein). AgRPHind cells consisted of locally projecting neurons as well as tanycyte-like cells. Food deprivation stimulated hindbrain Agrp expression as well as neuronal activity of subsets of AgRPHind cells. In adult mice that lacked hypothalamic AgRP neurons, chemogenetic activation of AgRP neurons resulted in hyperphagia and weight gain. In addition, transcranial focal photo-stimulation of hindbrain AgRP cells increased food intake in adult mice with or without hypothalamic AgRP neurons. CONCLUSIONS: Our study indicates that the central melanocortin system in the hindbrain possesses an orexigenic component, and that AgRPHind neurons stimulate feeding independently of hypothalamic AgRP neurons.


Assuntos
Hipotálamo , Melanocortinas , Camundongos , Animais , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Camundongos Transgênicos , Melanocortinas/metabolismo , Rombencéfalo/metabolismo , Mamíferos/metabolismo
2.
Sci Signal ; 15(733): eabj8204, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35536884

RESUMO

Variants in the gene encoding ankyrin repeat and SOCS box-containing 4 (ASB4) are linked to human obesity. Here, we characterized the pathways underlying the metabolic functions of ASB4. Hypothalamic Asb4 expression was suppressed by fasting in wild-type mice but not in mice deficient in AgRP, which encodes Agouti-related protein (AgRP), an appetite-stimulating hormone, suggesting that ASB4 is a negative target of AgRP. Many ASB4 neurons in the brain were adjacent to AgRP terminals, and feeding induced by AgRP neuronal activation was disrupted in Asb4-deficient mice. Acute knockdown of Asb4 in the brain caused marked hyperphagia due to increased meal size, and Asb4 deficiency led to increased meal size and food intake at the onset of refeeding, when very large meals were consumed. Asb4-deficient mice were resistant to the meal-terminating effects of exogenously administered calcitonin and showed decreased neuronal expression of Calcr, which encodes the calcitonin receptor. Pro-opiomelanocortin (POMC) neurons in the arcuate nucleus in mice are involved in glucose homeostasis, and Asb4 deficiency specifically in POMC neurons resulted in glucose intolerance that was independent of obesity. Furthermore, individuals with type 2 diabetes showed reduced ASB4 abundance in the infundibular nuclei, the human equivalent of the arcuate nucleus. Together, our results indicate that ASB4 acts in the brain to improve glucose homeostasis and to induce satiety after substantial meals, particularly those after food deprivation.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropeptídeos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Animais , Calcitonina/metabolismo , Calcitonina/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Homeostase , Hipotálamo/metabolismo , Camundongos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia
3.
Am J Physiol Endocrinol Metab ; 318(5): E655-E666, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32045262

RESUMO

Excessive alcohol consumption, including binge drinking, is a common cause of fatty liver disease. Binge drinking rapidly induces hepatic steatosis, an early step in the pathogenesis of chronic liver injury. Despite its prevalence, the process by which excessive alcohol consumption promotes hepatic lipid accumulation remains unclear. Alcohol exerts potent effects on the brain, including hypothalamic neurons crucial for metabolic regulation. However, whether or not the brain plays a role in alcohol-induced hepatic steatosis is unknown. In the brain, alcohol increases extracellular levels of adenosine, a potent neuromodulator, and previous work implicates adenosine signaling as being important for the development of alcoholic fatty liver disease. Acute alcohol exposure also increases both the activity of agouti-related protein (AgRP)-expressing neurons and AgRP immunoreactivity. Here, we show that adenosine receptor A2B signaling in the brain modulates the extent of alcohol-induced fatty liver in mice and that both the AgRP neuropeptide and the sympathetic nervous system are indispensable for hepatic steatosis induced by bingelike alcohol consumption. Together, these results indicate that the brain plays an integral role in alcohol-induced hepatic lipid accumulation and that central adenosine signaling, hypothalamic AgRP, and the sympathetic nervous system are crucial mediators of this process.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Fígado Gorduroso Alcoólico/metabolismo , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Neurônios/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Masculino , Camundongos
4.
Trends Endocrinol Metab ; 29(6): 363-366, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29477281

RESUMO

Bile acids facilitate dietary fat absorption upon release into the small intestine after a meal. A recent study by Liu and colleagues identifies a gut-brain axis wherein bile acids signal an energy-replete state to hypothalamic AgRP neurons via activation of neuronal FGF receptors, which orchestrate whole-body glucose metabolism.


Assuntos
Ácidos e Sais Biliares , Fatores de Crescimento de Fibroblastos , Encéfalo , Glucose , Hipotálamo
5.
Cell Rep ; 19(11): 2257-2271, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28614713

RESUMO

Neurons expressing agouti-related protein (AgRP) are essential for feeding. The majority of these neurons are located outside the blood-brain barrier (BBB), allowing them to directly sense circulating metabolic factors. Here, we show that, in adult mice, AgRP neurons outside the BBB (AgRPOBBB) were rapidly ablated by peripheral administration of monosodium glutamate (MSG), whereas AgRP neurons inside the BBB and most proopiomelanocortin (POMC) neurons were spared. MSG treatment induced proliferation of tanycytes, the putative hypothalamic neural progenitor cells, but the newly proliferated tanycytes did not become neurons. Intriguingly, AgRPOBBB neuronal number increased within a week after MSG treatment, and newly emerging AgRP neurons were derived from post-mitotic cells, including some from the Pomc-expressing cell lineage. Our study reveals that the lack of protection by the BBB renders AgRPOBBB vulnerable to lesioning by circulating toxins but that the rapid re-emergence of AgRPOBBB is part of a reparative process to maintain energy balance.


Assuntos
Barreira Hematoencefálica/citologia , Hipotálamo/citologia , Neurônios/citologia , Pró-Opiomelanocortina/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Hipotálamo/metabolismo , Camundongos , Neurônios/metabolismo
6.
Int J Mol Sci ; 18(4)2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28420089

RESUMO

Ghrelin, an orexigenic hormone released primarily from the gut, signals the hypothalamus to stimulate growth hormone release, enhance appetite and promote weight gain. The ghrelin receptor, aka Growth Hormone Secretagogue Receptor (GHS-R), is highly expressed in the brain, with highest expression in Agouti-Related Peptide (AgRP) neurons of the hypothalamus. We recently reported that neuron-specific deletion of GHS-R completely prevents diet-induced obesity (DIO) in mice by activating non-shivering thermogenesis. To further decipher the specific neuronal circuits mediating the metabolic effects of GHS-R, we generated AgRP neuron-specific GHS-R knockout mice (AgRP-Cre;Ghsrf/f). Our data showed that GHS-R in AgRP neurons is required for ghrelin's stimulatory effects on growth hormone secretion, acute food intake and adiposity, but not for long-term total food intake. Importantly, deletion of GHS-R in AgRP neurons attenuated diet-induced obesity (DIO) and enhanced cold-resistance in mice fed high fat diet (HFD). The HFD-fed knockout mice showed increased energy expenditure, and exhibited enhanced thermogenic activation in both brown and subcutaneous fat; this implies that GHS-R suppression in AgRP neurons enhances sympathetic outflow. In summary, our results suggest that AgRP neurons are key site for GHS-R mediated thermogenesis, and demonstrate that GHS-R in AgRP neurons plays crucial roles in governing energy utilization and pathogenesis of DIO.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Neurônios/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Termogênese , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Comportamento Alimentar , Deleção de Genes , Hormônio do Crescimento/metabolismo , Homeostase , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos
7.
Annu Rev Physiol ; 77: 131-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25668019

RESUMO

Diet-induced obesity leads to devastating and common chronic diseases, fueling ongoing interest in determining new mechanisms underlying both obesity and its consequences. It is now well known that chronic overnutrition produces a unique form of inflammation in peripheral insulin target tissues, and efforts to limit this inflammation have met with some success in preserving insulin sensitivity in obese individuals. Recently, the activation of inflammatory pathways by dietary excess has also been observed among cells located in the mediobasal hypothalamus, a brain area that exerts central control over peripheral glucose, fat, and energy metabolism. Here we review progress in the field of diet-induced hypothalamic inflammation, drawing key distinctions between metabolic inflammation in the hypothalamus and that occurring in peripheral tissues. We focus on specific stimuli of the inflammatory response, the roles of individual hypothalamic cell types, and the links between hypothalamic inflammation and metabolic function under normal and pathophysiological circumstances. Finally, we explore the concept of controlling hypothalamic inflammation to mitigate metabolic disease.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/fisiopatologia , Inflamação/fisiopatologia , Metabolismo/fisiologia , Animais , Dieta/efeitos adversos , Humanos , Hipotálamo/patologia , Doenças Metabólicas/fisiopatologia , Microglia/fisiologia , Obesidade/etiologia , Obesidade/fisiopatologia
8.
Cell Rep ; 9(6): 2124-38, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25497089

RESUMO

Diets rich in saturated fat produce inflammation, gliosis, and neuronal stress in the mediobasal hypothalamus (MBH). Here, we show that microglia mediate this process and its functional impact. Although microglia and astrocytes accumulate in the MBH of mice fed a diet rich in saturated fatty acids (SFAs), only the microglia undergo inflammatory activation, along with a buildup of hypothalamic SFAs. Enteric gavage specifically with SFAs reproduces microglial activation and neuronal stress in the MBH, and SFA treatment activates murine microglia, but not astrocytes, in culture. Moreover, depleting microglia abrogates SFA-induced inflammation in hypothalamic slices. Remarkably, depleting microglia from the MBH of mice abolishes inflammation and neuronal stress induced by excess SFA consumption, and in this context, microglial depletion enhances leptin signaling and reduces food intake. We thus show that microglia sense SFAs and orchestrate an inflammatory process in the MBH that alters neuronal function when SFA consumption is high.


Assuntos
Astrócitos/metabolismo , Gorduras na Dieta/metabolismo , Ácidos Graxos/metabolismo , Hipotálamo/metabolismo , Animais , Astrócitos/patologia , Células Cultivadas , Gorduras na Dieta/efeitos adversos , Ingestão de Alimentos , Metabolismo Energético , Ácidos Graxos/efeitos adversos , Gliose/etiologia , Gliose/metabolismo , Hipotálamo/citologia , Inflamação/etiologia , Inflamação/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Neurônios/fisiologia , Transdução de Sinais
9.
J Neurosci ; 33(29): 11972-85, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23864684

RESUMO

Like obesity, prolonged food deprivation induces severe hepatic steatosis; however, the functional significance of this phenomenon is not well understood. In this study, we show that the fall in plasma leptin concentration during fasting is required for the development of hepatic steatosis in mice. Removal of leptin receptors from AGRP neurons diminishes fasting-induced hepatic steatosis. Furthermore, the suppressive effects of leptin on fasting-induced hepatic steatosis are absent in mice lacking the gene encoding agouti-related protein (Agrp), suggesting that this function of leptin is mediated by AGRP. Prolonged fasting leads to suppression of hepatic sympathetic activity, increased expression of acyl CoA:diacylglycerol acyltransferase-2 in the liver, and elevation of hepatic triglyceride content and all of these effects are blunted in the absence of AGRP. AGRP deficiency, despite having no effects on feeding or body adiposity in the free-fed state, impairs triglyceride and ketone body release from the liver during prolonged fasting. Furthermore, reducing CNS Agrp expression in wild-type mice by RNAi protected against the development of hepatic steatosis not only during starvation, but also in response to consumption of a high-fat diet. These findings identify the leptin-AGRP circuit as a critical modulator of hepatic triglyceride stores in starvation and suggest a vital role for this circuit in sustaining the supply of energy from the liver to extrahepatic tissues during periods of prolonged food deprivation.


Assuntos
Proteína Relacionada com Agouti/genética , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Receptores para Leptina/genética , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Metabolismo Energético/efeitos dos fármacos , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Privação de Alimentos/fisiologia , Hipotálamo/efeitos dos fármacos , Leptina/farmacologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Norepinefrina/metabolismo , Obesidade/genética , Obesidade/metabolismo , Receptores para Leptina/metabolismo
10.
Proc Natl Acad Sci U S A ; 110(8): E697-706, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23386726

RESUMO

Chronic consumption of a fat-rich diet leads to attenuation of leptin signaling in hypothalamic neurons, a hallmark feature of cellular leptin resistance. To date, little is known about the temporal and spatial dysregulation of neuronal function under conditions of nutrient excess. We show that agouti-related protein (AgRP)-expressing neurons precede proopiomelanocortin neurons in developing diet-induced cellular leptin resistance. High-fat diet-induced up-regulation of suppressor of cytokine signaling-3 (SOCS3) occurs in AgRP neurons before proopiomelanocortin and other hypothalamic neurons. SOCS3 expression in AgRP neurons increases after 2 d of high-fat feeding, but reduces after switching to a low-fat diet for 1 d. Consistently, transgenic overexpression of SOCS3 in AgRP neurons produces metabolic phenotypes resembling those observed after short-term high-fat feeding. We further show that AgRP neurons are the predominant cell type situated outside the blood-brain barrier in the mediobasal hypothalamus. AgRP neurons are more responsive to low levels of circulating leptin, but they are also more prone to development of leptin resistance in response to a small increase in blood leptin concentrations. Collectively, these results suggest that AgRP neurons are able to sense slight changes in plasma metabolic signals, allowing them to serve as first-line responders to fluctuation of energy intake. Furthermore, modulation of SOCS3 expression in AgRP neurons may play a dynamic and physiological role in metabolic fine tuning in response to short-term changes of nutritional status.


Assuntos
Gorduras na Dieta/administração & dosagem , Hipotálamo/fisiopatologia , Leptina/fisiologia , Neurônios/fisiologia , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Animais , Hipotálamo/citologia , Camundongos , Neurônios/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas , Regulação para Cima
11.
Neuron ; 75(3): 425-36, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22884327

RESUMO

VIDEO ABSTRACT: The prevalence of obesity in older people is the leading cause of metabolic syndromes. Central neurons serving as homeostatic sensors for body-weight control include hypothalamic neurons that express pro-opiomelanocortin (POMC) or neuropeptide-Y (NPY) and agouti-related protein (AgRP). Here, we report an age-dependent increase of mammalian target of rapamycin (mTOR) signaling in POMC neurons that elevates the ATP-sensitive potassium (K(ATP)) channel activity cell-autonomously to silence POMC neurons. Systemic or intracerebral administration of the mTOR inhibitor rapamycin causes weight loss in old mice. Intracerebral rapamycin infusion into old mice enhances the excitability and neurite projection of POMC neurons, thereby causing a reduction of food intake and body weight. Conversely, young mice lacking the mTOR-negative regulator TSC1 in POMC neurons, but not those lacking TSC1 in NPY/AgRP neurons, were obese. Our study reveals that an increase in mTOR signaling in hypothalamic POMC neurons contributes to age-dependent obesity.


Assuntos
Envelhecimento/fisiologia , Neurônios/metabolismo , Neurotransmissores/farmacologia , Obesidade/fisiopatologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Potenciais de Ação/fisiologia , Animais , Ingestão de Alimentos/fisiologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Imuno-Histoquímica , Canais KATP/metabolismo , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase Multiplex , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais/fisiologia
12.
Diabetes ; 59(4): 894-906, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20068134

RESUMO

OBJECTIVE: Hypothalamic leptin resistance is found in most common forms of obesity, such as diet-induced obesity, and is associated with increased expression of suppressor of cytokine signaling 3 (Socs3) in the hypothalamus of diet-induced obese animals. This study aims to determine the functional consequence of Socs3 upregulation on leptin signaling and obesity, and to investigate whether Socs3 upregulation affects energy balance in a cell type-specific way. RESEARCH DESIGN AND METHODS: We generated transgenic mice overexpressing Socs3 in either proopiomelanocortin (POMC) or leptin receptor-expressing neurons, at levels similar to what is observed in diet-induced obesity. RESULTS: Upregulation of Socs3 in POMC neurons leads to impairment of STAT3 and mammalian target of rapamycin (mTOR)-S6K-S6 signaling, with subsequent leptin resistance, obesity, and glucose intolerance. Unexpectedly, Socs3 upregulation in leptin receptor neurons results in increased expression of STAT3 protein in mutant hypothalami, but does not lead to obesity. CONCLUSIONS: Our study establishes that Socs3 upregulation alone in POMC neurons is sufficient to cause leptin resistance and obesity. Socs3 upregulation impairs both STAT3 and mTOR signaling before the onset of obesity. The lack of obesity in mice with upregulated Socs3 in leptin receptor neurons suggests that Socs3's effect on energy balance could be cell type specific. Our study indicates that POMC neurons are important mediators of Socs3's effect on leptin resistance and obesity, but that other cell types or alteration of other signaling regulators could contribute to the development of obesity.


Assuntos
Pró-Opiomelanocortina/fisiologia , Proteínas Supressoras da Sinalização de Citocina/genética , Animais , Glicemia/metabolismo , Primers do DNA , Feminino , Amplificação de Genes , Genótipo , Hipotálamo/fisiologia , Insulina/sangue , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Reação em Cadeia da Polimerase , Pró-Opiomelanocortina/genética , Receptores para Leptina/genética , Proteína 3 Supressora da Sinalização de Citocinas , Regulação para Cima
13.
J Neurosci ; 30(2): 723-30, 2010 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20071537

RESUMO

The ability to develop counter-regulatory mechanisms to maintain energy balance in response to environmental and physiologic insults is essential for survival, but the mechanisms underlying these compensatory regulations are poorly understood. Agouti-related peptide (AGRP) and Neuropeptide Y are potent orexigens and are coexpressed in neurons in the arcuate nucleus of the hypothalamus. Acute ablation of these neurons leads to severe anorexia and weight loss, whereas progressive degeneration of these neurons has minimal impact on food intake and body weight, suggesting that compensatory mechanisms are developed to maintain orexigenic drive. In this study, we show that cell proliferation is increased in the hypothalamus of adult mutant animals in which AgRP neurons undergo progressive neurodegeneration due to deletion of mitochondrial transcription factor A, and that a subset of these newly generated cells differentiate into AgRP neurons along with other resident neuronal subtypes. Furthermore, some of the newly generated cells are capable of responding to leptin, and a central blockade of cell proliferation in adult animals results in decreases in food intake and body adiposity in mutant but not in control animals. Our study indicates that neurons important for energy homeostasis can be regenerated in adult feeding centers under neurodegenerative conditions. It further suggests that de novo neurogenesis might serve as a compensatory mechanism contributing to the plastic control of energy balance in response to environmental and physiologic insults.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Absorciometria de Fóton/métodos , Hormônio Adrenocorticotrópico/metabolismo , Proteína Relacionada com Agouti/genética , Análise de Variância , Animais , Animais Recém-Nascidos , Antimetabólitos Antineoplásicos/farmacologia , Composição Corporal/efeitos dos fármacos , Composição Corporal/genética , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Bromodesoxiuridina/metabolismo , Contagem de Células/métodos , Proliferação de Células/efeitos dos fármacos , Citarabina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Hipotálamo/citologia , Injeções Intraventriculares/métodos , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Neurônios/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Tempo
14.
Endocrinology ; 151(2): 671-82, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20022934

RESUMO

c-Jun-N-terminal kinase (JNK) is a signaling molecule that is activated by proinflammatory signals, endoplasmic reticulum (ER) stress, and other environmental stressors. Although JNK has diverse effects on immunological responses and insulin resistance in peripheral tissues, a functional role for JNK in feeding regulation has not been established. In this study, we show that central inhibition of JNK activity potentiates the stimulatory effects of glucocorticoids on food intake and that this effect is abolished in mice whose agouti-related peptide (AgRP) neurons are degenerated. JNK1-deficient mice feed more upon central administration of glucocorticoids, and glucocorticoid receptor nuclear immunoreactivity is enhanced in the AgRP neurons. JNK inhibition in hypothalamic explants stimulates Agrp expression, and JNK1-deficient mice exhibit increased Agrp expression, heightened hyperphagia, and weight gain during refeeding. Our study shows that JNK1 is a novel regulator of feeding by antagonizing glucocorticoid function in AgRP neurons. Paradoxically, JNK1 mutant mice feed less and lose more weight upon central administration of insulin, suggesting that JNK1 antagonizes insulin function in the brain. Thus, JNK may integrate diverse metabolic signals and differentially regulate feeding under distinct physiological conditions.


Assuntos
Apetite/fisiologia , Ingestão de Energia/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Proteína Relacionada com Agouti/genética , Animais , Hormônio Liberador da Corticotropina/genética , Ingestão de Energia/efeitos dos fármacos , Deleção de Genes , Homeostase , Hipotálamo/citologia , Hipotálamo/fisiologia , Leptina/metabolismo , Leptina/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Mutantes , Proteína Quinase 8 Ativada por Mitógeno/genética , Neuropeptídeo Y/genética , Pró-Opiomelanocortina/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Dev Biol ; 339(1): 38-50, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20025866

RESUMO

The hypothalamic neuronal circuits that modulate energy homeostasis become mature and functional during early postnatal life. However, the molecular mechanism underlying this developmental process remains largely unknown. Here we use a mouse genetic approach to investigate the role of gamma-protocadherins (Pcdh-gammas) in hypothalamic neuronal circuits. First, we show that rat insulin promoter (RIP)-Cre conditional knockout mice lacking Pcdh-gammas in a broad subset of hypothalamic neurons are obese and hyperphagic. Second, specific deletion of Pcdh-gammas in anorexigenic proopiomelanocortin (POMC) expressing neurons also leads to obesity. Using cell lineage tracing, we show that POMC and RIP-Cre expressing neurons do not overlap but interact with each other in the hypothalamus. Moreover, excitatory synaptic inputs are reduced in Pcdh-gamma deficient POMC neurons. Genetic evidence from both knockout models shows that Pcdh-gammas can regulate POMC neuronal function autonomously and non-autonomously through cell-cell interaction. Taken together, our data demonstrate that Pcdh-gammas regulate the formation and functional integrity of hypothalamic feeding circuitry in mice.


Assuntos
Caderinas/fisiologia , Comportamento Alimentar/fisiologia , Hipotálamo/fisiologia , Animais , Proteínas Relacionadas a Caderinas , Caderinas/genética , Linhagem da Célula , Metabolismo Energético , Hipotálamo/citologia , Imuno-Histoquímica , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Imunoeletrônica , Neurônios/citologia , Reação em Cadeia da Polimerase
16.
Proc Natl Acad Sci U S A ; 106(37): 15932-7, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19805233

RESUMO

In female mammals including rodents and humans, feeding decreases during the periovulatory period of the ovarian cycle, which coincides with a surge in circulating estrogen levels. Ovariectomy increases food intake, which can be normalized by estrogen treatment at a dose and frequency mimicking those during the estrous cycle. Furthermore, administration of estrogen to rodents potently inhibits food intake. Despite these well-known effects of estrogen, neuronal subtypes that mediate estrogen's anorexigenic effects have not been identified. In this study, we show that changes in hypothalamic expression of agouti-related protein (Agrp) and neuropeptide Y (Npy) coincide with the cyclic changes in feeding across the estrous cycle. These cyclic changes in feeding are abolished in mice with degenerated AgRP neurons even though these mice cycle normally. Central administration of 17beta-estradiol (E2) decreases food intake in controls but not in mice lacking the AgRP neurons. Furthermore, E2 treatment suppresses fasting-induced c-Fos activation in AgRP and NPY neurons and blunts the refeeding response. Surprisingly, although estrogen receptor alpha (ERalpha) is the key mediator of estrogen's anorexigenic effects, we find that expression of ERalpha is completely excluded from AgRP and NPY neurons in the mouse hypothalamus, suggesting that estrogen may regulate these neurons indirectly via presynaptic neurons that express ERalpha. This study indicates that neurons coexpressing AgRP and NPY are functionally required for the cyclic changes in feeding across estrous cycle and that AgRP and NPY neurons are essential mediators of estrogen's anorexigenic function.


Assuntos
Proteína Relacionada com Agouti/fisiologia , Regulação do Apetite/fisiologia , Ciclo Estral/fisiologia , Neuropeptídeo Y/fisiologia , Proteína Relacionada com Agouti/deficiência , Proteína Relacionada com Agouti/genética , Animais , Regulação do Apetite/efeitos dos fármacos , Peso Corporal/genética , Peso Corporal/fisiologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Ciclo Estral/genética , Feminino , Expressão Gênica , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neuropeptídeo Y/deficiência , Neuropeptídeo Y/genética , Ovariectomia , Ovário/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Mol Endocrinol ; 22(3): 751-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18096691

RESUMO

Leptin is a fat-derived hormone that exerts pleiotropic effects on energy balance and neuroendocrine functions. Mice defective in leptin or its receptor [leptin receptor, isoform b (LepRb)] exhibit profound obesity, infertility, and reduced linear growth. Leptin binding to its receptor triggers multiple signaling pathways, including signal transducer and activator of transcription 3 (Stat 3), phosphatidylinositol-3-kinase, and ERK. A considerable amount of effort has been focused on how these signaling pathways mediate diverse leptin functions. Mice containing a mutant LepRb incapable of Stat3 signaling are obese but remain fertile with enhanced linear growth. In contrast, deletion of Stat3 in the whole brain with Nestin-Cre results in infertility and decreased linear growth, in addition to obesity. The additional phenotypes of the Nestin-mediated deletion could reflect Stat3 action in non-LepRb neurons or leptin-independent Stat3 actions in LepRb neurons. To resolve this discrepancy and to gain more insight into the metabolic actions of Stat3, we have generated mice in which Stat3 is disrupted specifically in LepRb neurons after the onset of leptin receptor expression. We show that mutant mice exhibit profound obesity with increased linear growth and normal fertility. In addition, impaired glycemic control in these animals correlates with their degree of obesity. These results demonstrate that Stat3 in LepRb neurons does not regulate linear growth or fertility. These results further suggest that leptin's effects on growth and reproduction are mediated by other signaling pathways, and that Stat3-mediated control of these functions is mediated independently of leptin and LepRb neurons.


Assuntos
Hipotálamo/fisiologia , Leptina/fisiologia , Neurônios/fisiologia , Receptores para Leptina/fisiologia , Fator de Transcrição STAT3/fisiologia , Proteína Relacionada com Agouti/biossíntese , Proteína Relacionada com Agouti/genética , Animais , Glicemia/metabolismo , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Feminino , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Neurônios/metabolismo , Neuropeptídeo Y/biossíntese , Neuropeptídeo Y/genética , Fosforilação , Pró-Opiomelanocortina/biossíntese , Pró-Opiomelanocortina/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores para Leptina/biossíntese , Receptores para Leptina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
J Clin Invest ; 117(8): 2325-36, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17671657

RESUMO

Hypothalamic AMP-activated protein kinase (AMPK) has been suggested to act as a key sensing mechanism, responding to hormones and nutrients in the regulation of energy homeostasis. However, the precise neuronal populations and cellular mechanisms involved are unclear. The effects of long-term manipulation of hypothalamic AMPK on energy balance are also unknown. To directly address such issues, we generated POMC alpha 2KO and AgRP alpha 2KO mice lacking AMPK alpha2 in proopiomelanocortin- (POMC-) and agouti-related protein-expressing (AgRP-expressing) neurons, key regulators of energy homeostasis. POMC alpha 2KO mice developed obesity due to reduced energy expenditure and dysregulated food intake but remained sensitive to leptin. In contrast, AgRP alpha 2KO mice developed an age-dependent lean phenotype with increased sensitivity to a melanocortin agonist. Electrophysiological studies in AMPK alpha2-deficient POMC or AgRP neurons revealed normal leptin or insulin action but absent responses to alterations in extracellular glucose levels, showing that glucose-sensing signaling mechanisms in these neurons are distinct from those pathways utilized by leptin or insulin. Taken together with the divergent phenotypes of POMC alpha 2KO and AgRP alpha 2KO mice, our findings suggest that while AMPK plays a key role in hypothalamic function, it does not act as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus.


Assuntos
Metabolismo Energético/fisiologia , Homeostase/fisiologia , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Complexos Multienzimáticos/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Proteína Relacionada com Agouti , Animais , Ingestão de Alimentos/fisiologia , Glucose/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Leptina/metabolismo , Camundongos , Camundongos Knockout , Complexos Multienzimáticos/deficiência , Pró-Opiomelanocortina/deficiência , Proteínas Serina-Treonina Quinases/deficiência , Transdução de Sinais/fisiologia
19.
Mol Endocrinol ; 20(10): 2591-602, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16709597

RESUMO

Energy homeostasis depends on the regulation of hypothalamic neurons by leptin, an adipocyte hormone whose circulating levels communicate body energy stores. Leptin activates the transcription factor signal transducer and activator of transcription 3 (Stat3) in hypothalamic neurons, including neuronal subtypes producing Agouti-related protein (Agrp), a neuropeptide that stimulates feeding. Previous studies have suggested a model in which high levels of Agrp transcription during fasting represent a default state that is actively repressed by phospho-Stat3 induced by leptin signaling in the fed state. We identify putative Stat3 binding elements in the Agrp promoter that have been highly conserved during vertebrate evolution. Using a reporter assay in transgenic mice that faithfully recapitulates normal regulation of Agrp, we show that these sites are required, but in a way opposite to that predicted by the existing model: mutation of the sites leads to a default state characterized by a low level of Agrp transcription and insensitivity to fasting. We also find that removing activatable Stat3 from Agrp neurons has no detectable effect on steady-state levels of Agrp mRNA in the fed or fasted state. These results suggest a new model for transcriptional regulation of orexigenic neuropeptides in which the default level of expression is low in the fed state, and transcriptional activation in response to fasting is mediated by factors other than Stat3.


Assuntos
Jejum , Regulação da Expressão Gênica/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neuropeptídeos/biossíntese , RNA Mensageiro/metabolismo , Transcrição Gênica/genética , Proteína Relacionada com Agouti , Animais , Sequência de Bases , Sítios de Ligação/genética , Cromossomos Artificiais Bacterianos , Hipotálamo/citologia , Imuno-Histoquímica , Hibridização In Situ , Leptina/metabolismo , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutagênese , Neurônios/metabolismo , RNA Mensageiro/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Análise de Sequência de DNA
20.
PLoS Biol ; 3(12): e415, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16296893

RESUMO

Normal aging in humans and rodents is accompanied by a progressive increase in adiposity. To investigate the role of hypothalamic neuronal circuits in this process, we used a Cre-lox strategy to create mice with specific and progressive degeneration of hypothalamic neurons that express agouti-related protein (Agrp) or proopiomelanocortin (Pomc), neuropeptides that promote positive or negative energy balance, respectively, through their opposing effects on melanocortin receptor signaling. In previous studies, Pomc mutant mice became obese, but Agrp mutant mice were surprisingly normal, suggesting potential compensation by neuronal circuits or genetic redundancy. Here we find that Pomc-ablation mice develop obesity similar to that described for Pomc knockout mice, but also exhibit defects in compensatory hyperphagia similar to what occurs during normal aging. Agrp-ablation female mice exhibit reduced adiposity with normal compensatory hyperphagia, while animals ablated for both Pomc and Agrp neurons exhibit an additive interaction phenotype. These findings provide new insight into the roles of hypothalamic neurons in energy balance regulation, and provide a model for understanding defects in human energy balance associated with neurodegeneration and aging.


Assuntos
Metabolismo Energético , Hipotálamo/patologia , Hipotálamo/fisiopatologia , Degeneração Neural/fisiopatologia , Proteína Relacionada com Agouti , Animais , Peso Corporal/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ingestão de Alimentos , Deleção de Genes , Genes Reporter/genética , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Degeneração Neural/genética , Degeneração Neural/metabolismo , Pró-Opiomelanocortina/deficiência , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA