Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Theranostics ; 14(2): 480-495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169536

RESUMO

Background: The neurobiological basis of gaining consciousness from unconscious state induced by anesthetics remains unknown. This study was designed to investigate the involvement of the cerebello-thalamus-motor cortical loop mediating consciousness transitions from the loss of consciousness (LOC) induced by an inhalational anesthetic sevoflurane in mice. Methods: The neural tracing and fMRI together with opto-chemogenetic manipulation were used to investigate the potential link among cerebello-thalamus-motor cortical brain regions. The fiber photometry of calcium and neurotransmitters, including glutamate (Glu), γ-aminobutyric acid (GABA) and norepinephrine (NE), were monitored from the motor cortex (M1) and the 5th lobule of the cerebellar vermis (5Cb) during unconsciousness induced by sevoflurane and gaining consciousness after sevoflurane exposure. Cerebellar Purkinje cells were optogenetically manipulated to investigate their influence on consciousness transitions during and after sevoflurane exposure. Results: Activation of 5Cb Purkinje cells increased the Ca2+ flux in the M1 CaMKIIα+ neurons, but this increment was significantly reduced by inactivation of posterior and parafascicular thalamic nucleus. The 5Cb and M1 exhibited concerted calcium flux, and glutamate and GABA release during transitions from wakefulness, loss of consciousness, burst suppression to conscious recovery. Ca2+ flux and Glu release in the M1, but not in the 5Cb, showed a strong synchronization with the EEG burst suppression, particularly, in the gamma-band range. In contrast, the Glu, GABA and NE release and Ca2+ oscillations were coherent with the EEG gamma band activity only in the 5Cb during the pre-recovery of consciousness period. The optogenetic activation of Purkinje cells during burst suppression significantly facilitated emergence from anesthesia while the optogenetic inhibition prolonged the time to gaining consciousness. Conclusions: Our data indicate that cerebellar neuronal communication integrated with motor cortex through thalamus promotes consciousness recovery from anesthesia which may likely serve as arousal regulation.


Assuntos
Anestesia , Córtex Motor , Camundongos , Animais , Estado de Consciência/fisiologia , Sevoflurano/efeitos adversos , Células de Purkinje/fisiologia , Cálcio , Inconsciência/induzido quimicamente , Neurônios , Glutamatos/efeitos adversos , Ácido gama-Aminobutírico
2.
Cell Res ; 33(10): 775-789, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37311832

RESUMO

Nociceptive signals are usually transmitted to layer 4 neurons in somatosensory cortex via the spinothalamic-thalamocortical pathway. The layer 5 corticospinal neurons in sensorimotor cortex are reported to receive the output of neurons in superficial layers; and their descending axons innervate the spinal cord to regulate basic sensorimotor functions. Here, we show that a subset of layer 5 neurons receives spinal inputs through a direct spino-cortical circuit bypassing the thalamus, and thus define these neurons as spino-cortical recipient neurons (SCRNs). Morphological studies revealed that the branches from spinal ascending axons formed a kind of disciform structure with the descending axons from SCRNs in the basilar pontine nucleus (BPN). Electron microscopy and calcium imaging further confirmed that the axon terminals from spinal ascending neurons and SCRNs made functional synaptic contacts in the BPN, linking the ascending sensory pathway to the descending motor control pathway. Furthermore, behavioral tests indicated that the spino-cortical connection in the BPN was involved in nociceptive responses. In vivo calcium imaging showed that SCRNs responded to peripheral noxious stimuli faster than neighboring layer 4 cortical neurons in awake mice. Manipulating activities of SCRNs could modulate nociceptive behaviors. Therefore, this direct spino-cortical circuit represents a noncanonical pathway, allowing a fast sensory-motor transition of the brain in response to noxious stimuli.


Assuntos
Cálcio , Nociceptividade , Camundongos , Animais , Tálamo/anatomia & histologia , Tálamo/fisiologia , Neurônios
3.
Nat Commun ; 14(1): 3792, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365155

RESUMO

Viral tracers that enable efficient retrograde labeling of projection neurons are powerful vehicles for structural and functional dissections of the neural circuit and for the treatment of brain diseases. Currently, some recombinant adeno-associated viruses (rAAVs) based on capsid engineering are widely used for retrograde tracing, but display undesirable brain area selectivity due to inefficient retrograde transduction in certain neural connections. Here we developed an easily editable toolkit to produce high titer AAV11 and demonstrated that it exhibits potent and stringent retrograde labeling of projection neurons in adult male wild-type or Cre transgenic mice. AAV11 can function as a powerful retrograde viral tracer complementary to AAV2-retro in multiple neural connections. In combination with fiber photometry, AAV11 can be used to monitor neuronal activities in the functional network by retrograde delivering calcium-sensitive indicator under the control of a neuron-specific promoter or the Cre-lox system. Furthermore, we showed that GfaABC1D promoter embedding AAV11 is superior to AAV8 and AAV5 in astrocytic tropism in vivo, combined with bidirectional multi-vector axoastrocytic labeling, AAV11 can be used to study neuron-astrocyte connection. Finally, we showed that AAV11 allows for analyzing circuit connectivity difference in the brains of the Alzheimer's disease and control mice. These properties make AAV11 a promising tool for mapping and manipulating neural circuits and for gene therapy of some neurological and neurodegenerative disorders.


Assuntos
Astrócitos , Neurônios , Camundongos , Masculino , Animais , Camundongos Transgênicos , Interneurônios , Encéfalo , Dependovirus/genética , Vetores Genéticos/genética
4.
Cell Rep ; 41(5): 111570, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323263

RESUMO

An appropriate balance between explorative and defensive behavior is essential for the survival and reproduction of prey animals in risky environments. However, the neural circuit and mechanism that allow for such a balance remains poorly understood. Here, we use a semi-naturalistic predator threat test (PTT) to observe and quantify the defense-exploration balance, especially risk exploration behavior in mice. During the PTT, the activity of the putative dorsal CA3 glutamatergic neurons (dCA3Glu) is suppressed by predatory threat and risk exploration, whereas the neurons are activated during contextual exploration. Moreover, optogenetic excitation of these neurons induces a significant increase in risk exploration. A circuit, comprising the dorsal CA3, dorsal lateral septal, and dorsomedial hypothalamic (dCA3Glu-dLSGABA-DMH) areas, may be involved. Moreover, activation of the dCA3Glu-dLSGABA-DMH circuit promotes the switch from defense to risk exploration and suppresses threat-induced increase in arousal.


Assuntos
Comportamento Exploratório , Hipotálamo , Animais , Camundongos , Ácido gama-Aminobutírico , Neurônios
5.
Curr Med Sci ; 42(2): 417-425, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35366148

RESUMO

OBJECTIVE: Previous studies have shown that the autonomic nervous system (ANS), which can be affected by emotions, is important in the occurrence or progression of glaucoma. The autonomic innervation distributed in the anterior chamber (AC) structures might play an efferent role in the neural regulation of intraocular pressure (IOP). This study aimed to investigate the anatomic neural connection from the emotional brain to autonomic innervation in the AC. METHODS: A retrograde trans-multisynaptic pseudorabies virus encoded with an enhanced green fluorescent protein (PRV531) and non-trans-synaptic tracer FAST Dil were injected into the right eye of mice, respectively. Fluorescent localization in the emotional brain and preganglionic nuclei was studied. Five and a half days after PRV531 injection into the right AC, fluorescent signals were observed in several emotional brain regions, including the amygdala, agranular insular cortex, lateral septal nuclei, periaqueductal gray, and hypothalamus. Autonomic preganglionic nuclei, including Edinger-Westphal nucleus, superior salivatory nucleus, and intermediolateral nucleus, were labeled using PRV531. RESULTS: The sensory trigeminal nuclei were not labeled using PRV531. The fluorescence signals in the nuclei mentioned above showed bilateral distribution, primarily on the ipsilateral side. Seven days after injecting FAST Dil into the AC, we observed no FAST Dil-labeled neurons in the central nervous system. CONCLUSION: Our results indicate a neural connection from the emotional brain to autonomic innervation in the AC, which provides anatomical support for the emotional influence of IOP via the ANS.


Assuntos
Sistema Nervoso Autônomo , Herpesvirus Suídeo 1 , Animais , Câmara Anterior/inervação , Emoções , Hipotálamo , Camundongos
6.
Nat Neurosci ; 24(8): 1132-1141, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34168339

RESUMO

Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how environmental context drives non-homeostatic feeding is elusive. Here, we identify a population of somatostatin (TNSST) neurons in the mouse hypothalamic tuberal nucleus that are preferentially activated by palatable food. Activation of TNSST neurons enabled a context to drive non-homeostatic feeding in sated mice and required inputs from the subiculum. Pairing a context with palatable food greatly potentiated synaptic transmission between the subiculum and TNSST neurons and drove non-homeostatic feeding that could be selectively suppressed by inhibiting TNSST neurons or the subiculum but not other major orexigenic neurons. These results reveal how palatable food, through a specific hypothalamic circuit, empowers environmental context to drive non-homeostatic feeding.


Assuntos
Comportamento Alimentar/fisiologia , Hipotálamo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Animais , Sinais (Psicologia) , Masculino , Camundongos , Somatostatina/metabolismo
7.
Exp Eye Res ; 202: 108367, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232710

RESUMO

The autonomic innervation in the anterior chamber (AC) structures might play an efferent role in neural intraocular pressure (IOP) regulation, the center of which is thought to be located in the hypothalamus. In this study, we identified the efferent pathway from the hypothalamus to the autonomic innervation in the AC structures. Retrograde trans-multisynaptic pseudorabies virus (PRV) expressing green or red fluorescent protein, PRV531 and PRV724, was injected into the right and left AC of five rats, respectively; PRV531 was injected into the right AC of another five rats, and a non-trans-synaptic tracer, FAST Dil, was injected into the right AC of five rats as a control. Fluorescence signals in autonomic ganglia,the spinal cord and the central nervous system (CNS) were observed. Seven days after FAST Dil right AC injection, FAST Dil-labeled neurons were observed in the ipsilateral autonomic ganglia, including the superior cervical ganglion, pterygopalatine ganglion, and ciliary ganglion, but not in the CNS. Four and a half days after PRV531 injection into the right AC, PRV531-labeled neurons could be observed in the ipsilateral autonomic ganglia and bilateral hypothalamus nuclei, especially in the suprachiasmatic nucleus, paraventricular nucleus, dorsomedial hypothalamus, perifornical hypothalamus and ventral mammillary nucleus. Fluorescence signals of PRV531 mainly located in the ipsilateral autonomic preganglionic nuclei (Edinger-Westphal nucleus, superior salivatory nucleus and intermediolateral nucleus), but not in sensory trigeminal nuclei. Four and a half days after PRV531 right AC injection and PRV724 left AC injection, PRV531-labeled, PRV724-labeled, and double-labeled neurons could be observed in the above mentioned bilateral hypothalamus nuclei; but few contralateral infection-involving neurons (including double-labeled neurons) could be detected in the autonomic preganglionic nuclei. Our results indicate that there exist a both crossed and uncrossed hypothalamo-pre-parasympathetic and -pre-sympathetic tracts in the efferent pathways between the bilateral hypothalamic nuclei and the autonomic innervation of the bilateral AC.


Assuntos
Câmara Anterior/inervação , Sistema Nervoso Autônomo/anatomia & histologia , Vias Eferentes/anatomia & histologia , Hipotálamo/anatomia & histologia , Animais , Pressão Intraocular/fisiologia , Masculino , Modelos Anatômicos , Modelos Animais , Ratos , Ratos Sprague-Dawley
8.
Neuron ; 102(1): 128-142.e8, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30795900

RESUMO

Light plays a pivotal role in the regulation of affective behaviors. However, the precise circuits that mediate the impact of light on depressive-like behaviors are not well understood. Here, we show that light influences depressive-like behaviors through a disynaptic circuit linking the retina and the lateral habenula (LHb). Specifically, M4-type melanopsin-expressing retinal ganglion cells (RGCs) innervate GABA neurons in the thalamic ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL), which in turn inhibit CaMKIIα neurons in the LHb. Specific activation of vLGN/IGL-projecting RGCs, activation of LHb-projecting vLGN/IGL neurons, or inhibition of postsynaptic LHb neurons is sufficient to decrease the depressive-like behaviors evoked by long-term exposure to aversive stimuli or chronic social defeat stress. Furthermore, we demonstrate that the antidepressive effects of light therapy require activation of the retina-vLGN/IGL-LHb pathway. These results reveal a dedicated retina-vLGN/IGL-LHb circuit that regulates depressive-like behaviors and provide a potential mechanistic explanation for light treatment of depression.


Assuntos
Depressão , Transtorno Depressivo/terapia , Neurônios GABAérgicos/fisiologia , Corpos Geniculados/fisiologia , Habenula/fisiologia , Fototerapia , Células Ganglionares da Retina/fisiologia , Vias Visuais/fisiologia , Animais , Comportamento Animal , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Neurônios GABAérgicos/metabolismo , Masculino , Inibição Neural/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Retina/fisiologia , Opsinas de Bastonetes/metabolismo , Estresse Psicológico , Tálamo/fisiologia
9.
Nat Commun ; 8: 14908, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361990

RESUMO

Animals promote their survival by avoiding rapidly approaching objects that indicate threats. In mice, looming-evoked defensive responses are triggered by the superior colliculus (SC) which receives direct retinal inputs. However, the specific neural circuits that begin in the retina and mediate this important behaviour remain unclear. Here we identify a subset of retinal ganglion cells (RGCs) that controls mouse looming-evoked defensive responses through axonal collaterals to the dorsal raphe nucleus (DRN) and SC. Looming signals transmitted by DRN-projecting RGCs activate DRN GABAergic neurons that in turn inhibit serotoninergic neurons. Moreover, activation of DRN serotoninergic neurons reduces looming-evoked defensive behaviours. Thus, a dedicated population of RGCs signals rapidly approaching visual threats and their input to the DRN controls a serotonergic self-gating mechanism that regulates innate defensive responses. Our study provides new insights into how the DRN and SC work in concert to extract and translate visual threats into defensive behavioural responses.


Assuntos
Comportamento Animal/fisiologia , Núcleo Dorsal da Rafe/fisiologia , Defesa Perceptiva , Células Ganglionares da Retina/fisiologia , Serotonina/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Neurônios GABAérgicos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo , Colículos Superiores , Tálamo/fisiologia , Ácido gama-Aminobutírico/metabolismo
10.
Sci Rep ; 7: 41439, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28150719

RESUMO

The ventrobasal (VB) thalamus is innervated by GABAergic afferents from the thalamic reticular nucleus (TRN) and participates in nociception. But how the TRN-VB pathway regulates pain is not fully understood. In the present study, we reported decreased extracellular GABA levels in the VB of rats with CFA-induced chronic inflammatory pain, measured by microdialysis with HPLC analysis. In vitro whole-cell patch-clamp recording showed decreased amplitudes of tonic currents, increased frequencies of mIPSCs, and increased paired-pulse ratios in thalamic slices from chronic inflammatory rats (7 days). Microinjection of the GABAAR agonist muscimol and optogenetic activation of the TRN-VB pathway relieved thermal hyperalgesia in chronic inflammatory pain. By contrast, microinjecting the extrasynaptic GABAAR agonist THIP or selective knockout of synaptic GABAAR γ2 subunits aggravated thermal hyperalgesia in the chronic stage of inflammatory pain. Our findings indicate that reduced GABAergic transmission in the VB contributes to thermal hyperalgesia in chronic inflammatory pain, which could be a synaptic target for pharmacotherapy.


Assuntos
Dor Crônica/fisiopatologia , Neurônios GABAérgicos/fisiologia , Hiperalgesia/fisiopatologia , Inflamação/fisiopatologia , Transmissão Sináptica , Tálamo/fisiopatologia , Animais , Dor Crônica/complicações , Espaço Extracelular/metabolismo , Adjuvante de Freund , Técnicas de Inativação de Genes , Hiperalgesia/complicações , Inflamação/complicações , Isoxazóis/farmacologia , Masculino , Muscimol/farmacologia , Optogenética , Técnicas de Patch-Clamp , Subunidades Proteicas/metabolismo , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Tálamo/patologia , Ácido gama-Aminobutírico/metabolismo
11.
J Neurovirol ; 23(2): 205-215, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27739033

RESUMO

Semliki Forest virus (SFV), a neurotropic virus, has been used to deliver heterologous genes into cells in vitro and in vivo. In this study, we constructed a reporter SFV4-FL-EGFP and found that it can deliver EGFP into neurons located at the injection site without disseminating throughout the brain. Lacking of the capsid gene of SFV4-FL-EGFP does not block its life cycle, while forming replication-competent virus-like particles (VLPs). These VLPs hold subviral genome by using the packaging sequence (PS) located within the nsP2 gene, and can transfer their genome into cells. In addition, we found that the G protein of vesicular stomatitis virus (VSVG) can package SFV subviral genome, which is consistent with the previous reports. The G protein of rabies virus (RVG) could also package SFV subviral genome. These pseudo-typed SFV can deliver EGFP gene into neurons. Taken together, these findings may be used to construct various SFV-based delivery systems for virological studies, gene therapy, and neural circuit labeling.


Assuntos
Engenharia Genética , Terapia Genética/métodos , Vetores Genéticos/metabolismo , Hipotálamo/virologia , Neurônios/virologia , Vírus da Floresta de Semliki/genética , Animais , Linhagem Celular , Cricetulus , Células Epiteliais/ultraestrutura , Células Epiteliais/virologia , Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipotálamo/ultraestrutura , Injeções Intraventriculares , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/ultraestrutura , Cultura Primária de Células , Vírus da Raiva/genética , Vírus da Raiva/metabolismo , Vírus da Floresta de Semliki/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/genética
12.
Nat Commun ; 6: 6756, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25854147

RESUMO

The ability of animals to respond to life-threatening stimuli is essential for survival. Although vision provides one of the major sensory inputs for detecting threats across animal species, the circuitry underlying defensive responses to visual stimuli remains poorly defined. Here, we investigate the circuitry underlying innate defensive behaviours elicited by predator-like visual stimuli in mice. Our results demonstrate that neurons in the superior colliculus (SC) are essential for a variety of acute and persistent defensive responses to overhead looming stimuli. Optogenetic mapping revealed that SC projections to the lateral posterior nucleus (LP) of the thalamus, a non-canonical polymodal sensory relay, are sufficient to mimic visually evoked fear responses. In vivo electrophysiology experiments identified a di-synaptic circuit from SC through LP to the lateral amygdale (Amg), and lesions of the Amg blocked the full range of visually evoked defensive responses. Our results reveal a novel collicular-thalamic-Amg circuit important for innate defensive responses to visual threats.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Instinto , Núcleos Laterais do Tálamo/fisiologia , Neurônios/fisiologia , Colículos Superiores/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Potenciais Evocados Visuais , Núcleos Laterais do Tálamo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais , Optogenética , Estimulação Luminosa , Colículos Superiores/citologia , Tálamo/citologia , Tálamo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA