Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 325, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486093

RESUMO

Regulating metabolic disorders has become a promising focus in treating intervertebral disc degeneration (IDD). A few drugs regulating metabolism, such as atorvastatin, metformin, and melatonin, show positive effects in treating IDD. Glutamine participates in multiple metabolic processes, including glutaminolysis and glycolysis; however, its impact on IDD is unclear. The current study reveals that glutamine levels are decreased in severely degenerated human nucleus pulposus (NP) tissues and aging Sprague-Dawley (SD) rat nucleus pulposus tissues, while lactate accumulation and lactylation are increased. Supplementary glutamine suppresses glycolysis and reduces lactate production, which downregulates adenosine-5'-monophosphate-activated protein kinase α (AMPKα) lactylation and upregulates AMPKα phosphorylation. Moreover, glutamine treatment reduces NP cell senescence and enhances autophagy and matrix synthesis via inhibition of glycolysis and AMPK lactylation, and glycolysis inhibition suppresses lactylation. Our results indicate that glutamine could prevent IDD by glycolysis inhibition-decreased AMPKα lactylation, which promotes autophagy and suppresses NP cell senescence.


Assuntos
Degeneração do Disco Intervertebral , Ratos , Animais , Humanos , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Ratos Sprague-Dawley , Glutamina , Proteínas Quinases Ativadas por AMP , Autofagia , Lactatos/farmacologia , Lactatos/uso terapêutico
2.
J Ethnopharmacol ; 319(Pt 3): 117353, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37907145

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mushrooms in the genus Hericium are used as functional food and traditional medicines for a long history in East Asian countries such as China, India, Japan, and Korea. Some species of Hericium are called as monkey head mushroom (Houtougu) in China and Yamabushitake in Japan, which are traditionally considered as rare and precious health promoting food and medicinal materials for the treatment of dyspepsia, insomnia, chronic gastritis, and digestive tract tumors. THE AIM OF THE REVIEW: This review aims to summarize the ethnopharmacology and structural diversity of secondary metabolites from Hericium species, as well as the pharmacological activities of the crude extracts and pure compounds from Hericium species in recent years. MATERIALS AND METHODS: All the information was gathered by searching Scifinder, PubMed, Web of Science, ScienceDirect, Springer, Wiley, ACS, CNKI, Baidu Scholar, Google Scholar databases and other published materials (books and Ph.D. and M. Sc. Dissertations) using the keywords "Hericium", "Traditional uses", "Chemical composition", "Quality control" and "Pharmacological activity" (1971-May 2023). The species name was checked with https://www.mycobank.org/. RESULTS: The traditional uses of Hericium species were summarized, and 230 secondary metabolites from Hericium species were summarized and classified into six classes, mainly focusing on their chemical diversity, biosynthesis, biological activities. The modern pharmacological experiments in vivo or in vitro on their crude and fractionated extracts showed that the chemical components from Hericium species have a broad range of bioactivities, including neuroprotective, antimicrobial, anticancer, α-glucosidase inhibitory, antioxidant, and anti-inflammatory activities. CONCLUSIONS: The secondary metabolites discovered from Hericium species are highly structurally diverse, and they have the potential to be rich resources of bioactive fungal natural products. Moreover, the unveiled bioactivities of their crude extracts and pure compounds are closely related to critical human health concerns, and in-depth studies on the potential lead compounds, mechanism of pharmacological effects and pharmaceutical properties are clearly warranted.


Assuntos
Hericium , Fitoterapia , Humanos , Etnofarmacologia , Medicina Tradicional , Extratos Vegetais/uso terapêutico , Compostos Fitoquímicos/uso terapêutico
3.
Phytomedicine ; 118: 154940, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453194

RESUMO

BACKGROUND AND PURPOSE: Human hepatocellular carcinoma (HCC) features include enhanced glycolysis and elevated lactate concentrations. Accumulation of lactate during metabolism provides a precursor for histone lysine modification. This study was designed to determine whether royal jelly acid (RJA) acts against HCC through the lactate modification pathway. EXPERIMENTAL APPROACH: The effects of RJA on Hep3B and HCCLM3 cell invasion, migration, proliferation, and apoptosis were investigated using cell scratching, colony formation assay, flow cytometry, western blotting, and real-time qPCR, gas chromatography, and RNA sequencing to determine the pathways and molecular targets involved. Tumor xenografts were used to evaluate the anti-HCC effects of RJA in vivo. In-cell Western blotting and expression correlation analysis were applied to confirm the associations between H3 histone lactylation and the antitumor effects of RJA. KEY RESULTS: RJA has good antitumor effects in vivo and in vitro. Multi-omics analysis with metabolome and transcriptome determined that the glycolytic metabolic pathway provided the principle antitumor effect of RJA. Further mechanistic studies showed that RJA inhibited HCC development by interfering with lactate production and inhibiting H3 histone lactylation at H3K9la and H3K14la sites. CONCLUSIONS AND IMPLICATIONS: This study first demonstrated that RJA exerts antitumor effects by affecting the glycolytic pathway. RJA could regulate the lactylation of H3K9la and H3K14la sites on H3 histone using lactate as a clue in the glycolytic pathway. Therefore, the lactylation of H3 histone is vital in exerting the antitumor effect of RJA, providing new evidence for screening and exploring antitumor drug mechanisms in the later stage.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Histonas/metabolismo , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Ácido Láctico
4.
Planta Med ; 89(5): 493-507, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35716667

RESUMO

Acute lung injury (ALI) is one of the representative "lung heat syndromes" in traditional Chinese medicine (TCM). Scutellaria baicalensis is an herbal medicine used in TCM for treating lung diseases, due to its remarkable anti-inflammatory and antiviral effects. When used in TCM, S. baicalensis root is divided into two categories: S. baicalensis pith-not-decayed root (SN) and S. baicalensis pith-decayed root (SD). Compared to SN, SD has a better effect on lung diseases. We constructed a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model to study the pharmacodynamic mechanism of SD. The ethanolic extract of Scutellaria baicalensis pith-decayed root (EESD) significantly affected LPS-induced ALI by reducing alveolar interstitial thickening, pulmonary edema, and other pathological symptoms, decreasing the infiltration of inflammatory cells, especially macrophages, and inhibiting IL-1ß, TNF-α, and IL-6 transcription and translation. Furthermore, in the THP-1 macrophage model induced by LPS, EESD inhibited the expression of phosphorylated nuclear factor inhibitory protein alpha (p-IκBα), phosphorylated nuclear factor-κB P65 (p-p65), cleaved-caspase-1, cleaved-IL-1ß protein, and the release of inflammatory factors in the NF-κB/NLRP3 pathway, inhibiting macrophage function. In vivo experiments yielded similar results. Therefore, the present study clarified the potential of EESD in the treatment of ALI and revealed its potential pharmacodynamic mechanism by inhibiting the NF-κB/NLRP3 inflammasome pathway and suppressing the pro-inflammatory phenotype activation of lung tissue macrophages.


Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Scutellaria baicalensis , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Macrófagos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Pulmão/metabolismo , Pulmão/patologia
5.
Phytother Res ; 37(2): 477-489, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36199227

RESUMO

Atractylodin (ATL) has been reported to exert anti-inflammatory effects. Osteogenic changes induced by inflammation in valve interstitial cells (VICs) play a key role in the development of calcified aortic valve disease (CAVD). This study aimed to investigate the anti-calcification effects of ATL on aortic valves. Human VICs (hVICs) were exposed to osteogenic induction medium (OM) containing ATL to investigate cell viability, osteogenic gene and protein expression, and anti-calcification effects. Gas chromatography-mass spectroscopy (GC-MS) metabolomics analysis was used to detect changes in the metabolites of hVICs stimulated with OM before and after ATL administration. The compound-reaction-enzyme-gene network was used to identify drug targets. Gene interference was used to verify the targets. ApoE-/- mice fed a high-fat (HF) diet were used to evaluate the inhibition of aortic valve calcification by ATL. Treatment with 20 µM ATL in OM prevented calcified nodule accumulation and decreases in the gene and protein expression levels of ALP, RUNX2, and IL-1ß. Differential metabolite analysis showed that D-mannose was highly associated with the anti-calcification effect of ATL. The addition of D-mannose prevented calcified nodule accumulation and inhibited succinate-mediated HIF-1α activation and IL-1ß production. The target of ATL was identified as GLA. Silencing of the GLA gene (si-GLA) reversed the anti-osteogenic differentiation of ATL. In vivo, ATL ameliorated aortic valve calcification by preventing decreases in GLA expression and the up-regulation of IL-1ß expression synchronously. In conclusion, ATL is a potential drug for the treatment of CAVD by targeting GLA to regulate D-mannose metabolism, thereby inhibiting succinate-mediated HIF-1α activation and IL-1ß production.


Assuntos
Valva Aórtica , Manose , Humanos , Camundongos , Animais , Manose/metabolismo , Manose/farmacologia , Camundongos Knockout para ApoE , Diferenciação Celular/genética , Células Cultivadas , Osteogênese
6.
Phytother Res ; 37(3): 820-833, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36420870

RESUMO

Atractylenolide-1 (AT-1) is a major octanol alkaloid isolated from Atractylodes Rhizoma and is widely used to treat various diseases. However, few reports have addressed the anticancer potential of AT-1, and the underlying molecular mechanisms of its anticancer effects are unclear. This study aimed to assess the effect of AT-1 on triple-negative breast cancer (TNBC) cell proliferation and migration and explore its potential molecular mechanisms. Cell invasion assays confirmed that the number of migrating cells decreased after AT-1 treatment. Colony formation assays showed that AT-1 treatment impaired the ability of MDA-MB-231 cells to form colonies. AT-1 inhibited the expression of p-p38, p-ERK, and p-AKT in MDA-MB-231 cells, significantly downregulated the proliferation of anti-apoptosis-related proteins CDK1, CCND1, and Bcl2, and up-regulated pro-apoptotic proteins Bak, caspase 3, and caspase 9. The gas chromatography-mass spectroscopy results showed that AT-1 downregulated the metabolism-related genes TPI1 and GPI through the glycolysis/gluconeogenesis pathway and inhibited tumor growth in vivo. AT-1 affected glycolysis/gluconeogenesis by downregulating the expression of TPI1 and GPI, inhibiting the proliferation, migration, and invasion of (TNBC) MDA-MB-231 cells and suppressing tumor growth in vivo.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Gluconeogênese , Antineoplásicos/farmacologia , Proliferação de Células , Movimento Celular
7.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555773

RESUMO

Acute lung injury (ALI) is a syndrome caused by an excessive inflammatory response characterized by intractable hypoxemia both inside and outside the lung, for which effective therapeutic drugs are lacking. Atractylodis rhizoma, a traditional Chinese medicine, has excellent anti-inflammatory and antiviral properties in addition to protecting the integrity of the cellular barrier. However, few studies of Atractylodis rhizoma for the treatment of ALI have been published, and its mechanism of action remains unclear. In the present study, the chemical composition of the ethanolic extract of Atractylodis rhizoma (EEAR) was initially clarified by high performance liquid chromatography (HPLC), after which it was studied in vivo using a lipopolysaccharide (LPS)-induced ALI rat model. Treatment with EEAR significantly reduced the lung wet/dry (W/D) ratio, neutrophil infiltration, and malondialdehyde (MDA) and myeloperoxidase (MPO) formation, and enhanced superoxide dismutase (SOD) and glutathione (GSH) depletion in rats with ALI, thereby improving lung barrier function and effectively reducing lung injury. In addition, EEAR significantly reduced histopathological changes, decreased the expression of inflammatory factors (such as tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1ß), inducible nitric oxide synthase (INOS), and cyclooxygenase-2 (COX-2)), and inhibited the activation of the NF-κB signaling pathway, thus reducing inflammation. In addition, EEAR was found to also reduce oxidative stress in ALI by upregulating the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins heme oxygenase-1 (HO-1) and NADPH quinone acceptor oxidoreductase 1 (NQO-1). EEAR also reduced LPS-induced inflammatory factor expression in THP-1 cells in vitro by inhibition of the NF-κB signaling pathway, and reduced damage from lipopolysaccharide (LPS)-induced oxidative stress in THP-1 cells by promoting the expression of Nrf2 and its downstream targets HO-1 and NQO-1, the molecular mechanism of which was consistent with in vivo observations. Therefore, we conclude that EEAR attenuates oxidative stress and inflammatory responses via TLR4/NF-κB and Keap1/Nrf2 signaling pathways to alleviate LPS-induced ALI, suggesting that Atractylodis rhizoma is a potential drug candidate for the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Receptor 4 Toll-Like , Animais , Ratos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Glutationa/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/patologia , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Extratos Vegetais/farmacologia , Atractylodes/química
8.
Chem Biodivers ; 19(10): e202200767, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36098055

RESUMO

Two new C21 steroidal glycosides, brapreguanes A and B (1-2) were isolated from 75 % aqueous ethanol extract of Selaginella braunii Baker. Their structures were established by spectroscopic analyses (1D/2D NMR spectra and HR-ESI-MS). The absolute configurations of sugar were elucidated by enzymatic hydrolysis and GCMS analysis. In addition, all compounds were evaluated for the anti-proliferative activities against various human cancer cells in vitro. Compounds exhibited no inhibition to various human cancer cells.


Assuntos
Selaginellaceae , Humanos , Selaginellaceae/química , Estrutura Molecular , Glicosídeos/farmacologia , Glicosídeos/química , Açúcares , Etanol , Extratos Vegetais
9.
Genes (Basel) ; 13(5)2022 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-35627131

RESUMO

BACKGROUND: There have been many studies on the relationship between circRNAs and fat deposition. Although the liver is a central organ for fat metabolism, there are few reports on the relationship between circRNAs in the liver and fat deposition. METHODS: In this study, we systematically analyzed circular RNAs in the liver of Ningxiang pigs, at four time points after birth (30 days, 90 days, 150 days and 210 days). RESULTS: A total of 3705 circRNAs were coexpressed in four time periods were found, and KEGG analysis showed that the significantly upregulated pathways were mainly enriched in lipid metabolism and amino acid metabolism, while significantly downregulated pathways were mainly related to signal transduction, such as ECM-receptor interaction, MAPK signaling pathway, etc. Short time-series expression miner (STEM) analysis showed multiple model spectra that were significantly enriched over time in the liver. By constructing a competing endogenous RNA (ceRNA) regulatory network, 9187 pairs of networks related to the change in development time were screened. CONCLUSIONS: The expression profiles of circRNAs in Ningxiang pig liver were revealed at different development periods, and it was determined that there is differential coexpression. Through enrichment analysis of these circRNAs, it was revealed that host genes were involved in metabolism-related signaling pathways and fatty acid anabolism. Through STEM analysis, many circRNAs involved in fat metabolism, transport, and deposition pathways were screened, and the first circRNA-miRNA-mRNA regulation network map in Ningxiang pig liver was constructed. The highly expressed circRNAs related to fat deposition were verified and were consistent with RNA-Seq results.


Assuntos
MicroRNAs , RNA Circular , Animais , China , Fígado/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Mensageiro/genética , Suínos/genética
10.
Acta Pharm Sin B ; 12(2): 747-758, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256944

RESUMO

Although primary vesical calculi is an ancient disease, the mechanism of calculi formation remains unclear. In this study, we established a novel primary vesical calculi model with d,l-choline tartrate in mice. Compared with commonly used melamine and ethylene glycol models, our model was the only approach that induced vesical calculi without causing kidney injury. Previous studies suggest that proteins in the daily diet are the main contributors to the prevention of vesical calculi, yet the effect of fat is overlooked. To assay the relationship of dietary fat with the formation of primary vesical calculi, d,l-choline tartrate-treated mice were fed a high-fat, low-fat, or normal-fat diet. Genetic changes in the mouse bladder were detected with transcriptome analysis. A high-fat diet remarkably reduced the morbidity of primary vesical calculi. Higher fatty acid levels in serum and urine were observed in the high-fat diet group, and more intact epithelia in bladder were observed in the same group compared with the normal- and low-fat diet groups, suggesting the protective effect of fatty acids on bladder epithelia to maintain its normal histological structure. Transcriptome analysis revealed that the macrophage differentiation-related gene C-X-C motif chemokine ligand 14 (Cxcl14) was upregulated in the bladders of high-fat diet-fed mice compared with those of normal- or low-fat diet-fed mice, which was consistent with histological observations. The expression of CXCL14 significantly increased in the bladder in the high-fat diet group. CXCL14 enhanced the recruitment of macrophages to the crystal nucleus and induced the transformation of M2 macrophages, which led to phagocytosis of budding crystals and prevented accumulation of calculi. In human bladder epithelia (HCV-29) cells, high fatty acid supplementation significantly increased the expression of CXCL14. Dietary fat is essential for the maintenance of physiological functions of the bladder and for the prevention of primary vesical calculi, which provides new ideas for the reduction of morbidity of primary vesical calculi.

11.
Int Immunopharmacol ; 107: 108679, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35279514

RESUMO

PURPOSE: Spleen deficiency diarrhea (SDD) is one of the most common types of diarrhea and is linked to intestinal barrier dysfunction and intestinal flora disorders. Atractyloside-A (AA) is one of the main components of Atractylodes Lancea(Thunb.) DC., which acts on the gastrointestinal tract and has therapeutic effects on diarrhea. Folium sennae is a medicinal plant inducing diarrhea; thus, it is one of the effective methods to obtain a diarrhea model. However, the mechanism of action of AA in the treatment of SDD induced by Folium sennae is unclear. METHODS: The intestinal thrapeutic effect of AA on SDD in mice was evaluated by colon pathology. RNA sequencing (RNA-seq) was used to analyze the colonic transcriptome profiles. In addition, 16S rDNA sequencing and fecal microbiota transplantation (FMT) were carried out to verify the role of AA in the regulation of the intestinal flora. RESULTS: The findings revealed that AA alleviated SDD by ameliorating the pathological symptoms while suppressing intestinal inflammatory responses through the TLR4/MyD88/NF-kB signaling and reversing the impairment of mucin synthesis. Furthermore, AA improved the integrity of the intestinal barrier. RNA-seq identified 436 common DEGs out of 1033 DEGs between SDD and AA, and 1933 DEGs between SDD and Ctrl, which are highly enriched in the NF-κB and TNF pathways. Moreover, AA altered the composition of the intestinal flora and FMT reduced SDD. CONCLUSION: AA exerted a therapeutic effect on SDD through the regulation of the intestinal flora and the inflammation by interfering with the TLR4/MyD88/NF-κB signaling pathway.


Assuntos
Microbioma Gastrointestinal , NF-kappa B , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Atractilosídeo , Diarreia/tratamento farmacológico , Homeostase , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Baço/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
12.
Phytomedicine ; 98: 153945, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35114452

RESUMO

BACKGROUND: Atractylenolide-1, an active component of Atractylodes Lancea, which is widely used to improve the gastrointestinal function. However, the efficacy and mechanism remain unclear in treating ulcerative colitis (UC). PURPOSE: This study aimed to investigate the efficacy and the underlying mechanism of atractylenolide-1in UC. METHODS: A dextran sulfate sodium (DSS)-induced UC mouse model was used to investigate the efficacy of atractylenolide-1. 16S DNA sequencing, GC-MS technique and transcriptome sequencing were used to detect the composition of mouse intestinal flora, the changes of metabolites and gene expression in mouse intestine. Compound-reaction-enzyme-gene network was used to find drug targets. Recombinant plasmid overexpression was used to verify drug targets in DSS mouse models. RESULTS: The results showed that Atractylenolide-1 could significantly improve weight loss, diarrhea, blood in the stool, shortening of the colon, the loss of colonic goblet cells, reduction in mucoprotein MUC2, and tight junction proteins (zo-1, occludin) in mice with colitis. It reduced the inflammatory factors TNF-α, IL-6, IL-1ß as well. The 16S sequencing showed that Atractylenolide-1 regulated the diversity and abundance of the intestinal flora in mice with colitis, and the analysis of flora enrichment indicated that the regulation of intestinal flora by atractylenolide-1 may be related to the regulation of metabolism. Correlation analysis of metabolomics and transcriptome showed that two genes SPHK1 and B4GALT2 related to the metabolism of fructose and galactose were regulated by atractylenolide-1. Further verification showed that atractylenolide-1 significantly inhibited the aberrance of SPHK1 and B4GALT2 in the colon with colitis. Meanwhile, it inhibited the activation of the PI3K-AKT pathway. SPHK1 and B4GALT2 overexpressing reversed the therapeutic effect of atractylenolide-1 in mice with colitis. CONCLUSION: Atractylenolide-1 is a potential drug for the treatment of colitis by suppressing inflammation via the SPHK1/PI3K/AKT axis and by targeting SPHK1 and B4GAT2 to regulate fructose/galactose-related metabolism, thereby regulating the composition of the intestinal flora.

13.
Am J Chin Med ; 50(2): 525-552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35114907

RESUMO

Atractylodes lancea (Thunb.) DC. is a herb widely used traditionally for the treatment of gastrointestinal diseases such as gastric ulcer, spleen deficiency, and diarrhea. In China, people fry raw A. lancea (SCZ) together with wheat bran to make bran-fried A. lancea (FCZ). Ancient Chinese texts have documented that FCZ can enhance the function of regulating the intestines and stomach. Nevertheless, the effect and mechanism of SCZ and FCZ on ulcerative colitis (UC) are still unclear. The aim of this study was to compare the therapeutic effects of SCZ and FCZ and their mechanisms on dextran sulfate sodium (DSS)-induced UC in mice. The chemical constituents of SCZ and FCZ were analyzed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) with six reference compounds. The effects of SCZ and FCZ were investigated based on their effects on weight loss, disease activity index (DAI) score, colon length shortening, goblet cell loss, and pathological changes using the colons from a mouse model of DSS-induced UC. The effects of SCZ and FCZ on levels of the inflammatory cytokines (tumor necrosis factor-[Formula: see text], interleukin-6, interleukin-1[Formula: see text], mucoprotein (MUC2), tight protein (ZO-1, occludin), and the activation of macrophages were determined using immunohistochemistry (IHC) and immunofluorescence (IF). 16s RNA sequencing technology was used to detect the composition of the intestinal flora in each group. Nontargeted metabonomics was used to detect the serum metabolite levels of mice in each group. Pearson analysis was used to determine the correlation between the intestinal flora, metabolites, and pathological indices. Reverse transcription-polymerase chain reaction was used to detect the genes of different metabolite-related enzymes. A pseudogerm free (PGF) mouse model was used to verify whether the effect of SCZ and FCZ in UC depends on the regulation of intestinal flora. SCZ and FCZ could inhibit weight loss and decrease the DAI score, colon length shortening, goblet cell loss, and the extent of pathological changes in the colons of mice with DSS-induced colitis. Moreover, SCZ and FCZ inhibited the decrease in MUC2, ZO-1, occludin, production of pro-inflammatory factors, and activation of pro-inflammatory macrophages in colonic tissue. The effect of FCZ was better than that of SCZ. SCZ and FCZ not only inhibited the abundance of harmful bacteria and increased the abundance of beneficial bacteria, but also regulated the metabolism of disease-related metabolites such as amino acid and cholesterol metabolism. Both preparations inhibited the gene expression (Slc6A7, PRODH, Sdsl, HMGCR, SREBP-2) of different metabolite-related enzymes. In the PGF mouse model, the above effects were not observed. Rhizoma Atractylodes was effective in alleviating DSS-induced UC in mice, and FCZ was found to be superior to SCZ. The mechanism of action of FCZ and SCZ is mainly related to the regulation of intestinal flora and their associated metabolites.


Assuntos
Atractylodes , Colite , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Animais , Atractylodes/química , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Camundongos , Espectrometria de Massas em Tandem
14.
J Ethnopharmacol ; 284: 114771, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34737010

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Coptis chinensis Franch (CC) and Zingiber officinale Roscoe (dried ginger; DG) are traditional Chinese medicines. CC can dry dampness, relieve fire and detoxify, and is used to treat gastritis, gastric ulcer, colitis. DG can warm spleen and stomach for dispelling cold, used for the treatment of spleen and stomach deficiency. Both CC and DG are widely used to treat gastrointestinal diseases. CC-DG herb medicine combination originates from Huanglian decoction and Pinellia xiexin decoction in "Shanghan Lun" to comfort the stomach and intestines. CC and DG are used for the treatment of nausea and choking diaphragm which highly associated with gastric cancer clinically in ancient time. AIM OF THE STUDY: This study aimed to investigate the effects and underlying molecular mechanisms of CC-DG combination on gastric cancer. MATERIALS AND METHODS: The CC-DG extract was subjected to HPLC analysis. Viability (MTT) and cytotoxicity (CCK8) assays were performed using the SGC7901 and MFC cells. Cell cycle and apoptosis were measured by flow cytometry. The mRNA expression levels were measured by RT-PCR. In vivo anti-tumor activity of CC-DG was assessed in a tumor xenograft model. RESULTS: Twelve different proportions of CC-DG were tested for inhibitory effects on gastric cancer cells; CC-DG ratio 1:1 was found most effective. CC-DG administration significantly reduced the cell proliferation, migration, and colony formation, while increased cell apoptosis compared with the control group. CC-DG regulated differentially expressed genes in SGC7901 cells were subjected to pathway enrichment analysis. CC-DG significantly inhibited the cell glucose metabolism, downregulated the expression of LDHA and SLC2A1 genes, and changed the expression of other related genes including ME2, LDHD, LDHB, HIF1A, PKM, Pcx, and Got1. In addition, CC-DG suppressed tumorigenesis and inhibited MKI67 expression in the tumor xenograft model. CONCLUSIONS: CC-DG inhibited the proliferation, migration, invasion of SGC7901/MFC gastric cells, and in turn, suppressed tumorigenesis by regulating glucose metabolism through regulation of LDHA and SLC2A1 genes.


Assuntos
Coptis chinensis/química , Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , L-Lactato Desidrogenase/metabolismo , Fitoterapia , Zingiber officinale/química , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Movimento Celular , Relação Dose-Resposta a Droga , Transportador de Glucose Tipo 1/genética , Humanos , L-Lactato Desidrogenase/genética , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Camundongos , Camundongos Nus , Neoplasias Experimentais , Distribuição Aleatória , Neoplasias Gástricas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Nano Res ; 14(12): 4894-4900, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336143

RESUMO

The inferior electrical contact to two-dimensional (2D) materials is a critical challenge for their application in post-silicon very large-scale integrated circuits. Electrical contacts were generally related to their resistive effect, quantified as contact resistance. With a systematic investigation, this work demonstrates a capacitive metal-insulator-semiconductor (MIS) field-effect at the electrical contacts to 2D materials: The field-effect depletes or accumulates charge carriers, redistributes the voltage potential, and gives rise to abnormal current saturation and nonlinearity. On one hand, the current saturation hinders the devices' driving ability, which can be eliminated with carefully engineered contact configurations. On the other hand, by introducing the nonlinearity to monolithic analog artificial neural network circuits, the circuits' perception ability can be significantly enhanced, as evidenced using a coronavirus disease 2019 (COVID-19) critical illness prediction model. This work provides a comprehension of the field-effect at the electrical contacts to 2D materials, which is fundamental to the design, simulation, and fabrication of electronics based on 2D materials. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material (results of the simulation and SEM) is available in the online version of this article at 10.1007/s12274-021-3670-y.

16.
Front Nutr ; 8: 679129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222303

RESUMO

Background: Moutan cortex radicis (MCR), as a common traditional Chinese medicine, has been widely used as an antipyretic, antiseptic, and anti-inflammatory agent in China. Objectives: This study aimed to investigate the effects of dietary MCR supplementation on the antioxidant capacity and intestinal health of the pigs and to explore whether MCR exerts positive effects on intestinal health via regulating nuclear factor kappa-B (NF-κB) signaling pathway and intestinal microbiota. Methods: MCR powder was identified by LC-MS analysis. Selected 32 weaned piglets (21 d of age, 6.37 ± 0.10 kg average BW) were assigned (8 pens/diet, 1 pig/pen) to 4 groups and fed with a corn-soybean basal diet supplemented with 0, 2,000, 4,000, and 8,000 mg/kg MCR for 21 d. After the piglets were sacrificed, antioxidant indices, histomorphology examination, and inflammatory signaling pathway expression were assessed. The 16s RNA sequencing was used to analyze the effects of MCR on the intestinal microbiota structure of piglets. Results: Supplemental 4,000 mg/kg MCR significantly increased (P < 0.05) the average daily weight gain (ADG), average daily feed intake (ADFI), total antioxidative capability, colonic short-chain fatty acids (SCFA) concentrations, and the crypt depth in the jejunum but decreased (P < 0.05) the mRNA expression levels of interferon γ, tumor necrosis factor-α, interleukin-1ß, inhibiting kappa-B kinase ß (IKKß), inhibiting nuclear factor kappa-B (IκBα), and NF-κB in the jejunum and ileum. Microbiota sequencing identified that MCR supplementation significantly increased the microbial richness indices (Chao1, ACE, and observed species, P < 0.05) and the relative abundances of Firmicutes and Lactobacillus (P < 0.05), decreased the relative abundances of Bacteroides, Parabacteroides, unidentified_Lachnospiraceae, and Enterococcus (P < 0.05) and had no significant effects on the diversity indices (Shannon and Simpson, P > 0.05). Microbial metabolic phenotypes analysis also showed that the richness of aerobic bacteria and facultative anaerobic bacteria, oxidative stress tolerance, and biofilm forming were significantly increased (P < 0.05), and the richness of anaerobic bacteria and pathogenic potential of gut microbiota were reduced (P < 0.05) by MCR treatment. Regression analysis showed that the optimal MCR supplemental level for growth performance, serum antioxidant capacity, and intestinal health of weaned piglets was 3,420 ~ 4,237 mg/kg. Conclusions: MCR supplementation improved growth performance and serum antioxidant capacity, and alleviated intestinal inflammation by inhibiting the IKKß/IκBα/NF-κB signaling pathway and affecting intestinal microbiota in weaned piglets.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120119, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34243140

RESUMO

Unclear established standard of bran-fried Atractylodis Rhizoma (BFAR), a commonly used drug in Traditional Chinese Medicine (TCM), compromised its clinical efficacy. In this study, we explored the correlation between color and near-infrared spectroscopy (NIR) feature with content of atractylodin, then established a rapid recognition model for the optimal degree of processing for BFAR preparation. The results of the Pearson analysis indicated that the color values were significantly and positively correlated with atractylodin content. The back propagation artificial neural network algorithm and cluster analysis revealed the color of different BFAR could be accurately divided into three categories; subsequently, the color range for the optimal degrees of stir-frying was established as follows: R[red value (105.79-127.25)], G[green value(75.84-89.64)], B[blue value(33.33-42.73)], L[Lightness (81.26-95.09)].Using NIR, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and cluster analysis, three types of BFAR were accurately identified. The prediction model of atractylodin content was established using partial least squares regression analysis. The R2 of the validation set was 0.9717 and the root mean square error was 0.026. In the color judgment model, the processing degree of 8 batches of BFAR from the market is inferior. According to the NIR judgment model, the processing degree of all samples from the market is inferior. In conclusion, the best fire degree of BFAR can be identified quickly and accurately based on our established model. It is a potential method for quality evaluation of Chinese Materia Medica processing.


Assuntos
Atractylodes , Mineração de Dados , Furanos , Análise dos Mínimos Quadrados , Rizoma , Espectroscopia de Luz Próxima ao Infravermelho
18.
Genomics ; 113(4): 2468-2482, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34062231

RESUMO

The spatio-temporal expression patterns of RNA and comparisons between different developmental stages have been one of the useful techniques for studying animal physiology and functional gene regulations. A Chinese indigenous breed Ningxiang pig is known for its quality meat production, disease resistance and slow growth performances in pig industry. To gain a better understanding of pig immunity and disease resistance, we comprehensively analyzed the whole transcriptome of the spleens from three important developmental nodes of Ningxiang pig at 30, 90 and 210 days of age. By three ways of comparisons (30vs 90 days, 30 vs 210 days and 90 vs 210 days), a total of 364to 865 differentially expressed mRNAs, 37 to 98 differentially expressed miRNAs,220 to 278 lncRNAs, and 96 to 113 circRNAs were identified. Further analysis of expression patterns, potential function and interactions with miRNAs identified the potential non-coding RNAs related to immunomodulation such as ssc-miRNA-150, ssc-miRNA-497, MSTRG24160, MSTRG18646. The results revealed that miRNAs and circRNAs may have evolved to regulate a large set of biological processes of spleen function in Ningxiang pigs, and circRNAs play a role of miRNA sponges. The results from study is the first report of whole transcriptome analysis of Ningxiang pig spleen and provide new insights into the expression changes of RNAs during the spleen development, which contribute to the phenotypic formation of immunity and disease resistancesin Chinese indigenous pig breeds.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , China , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Baço/metabolismo , Suínos/genética , Transcriptoma
19.
J Ethnopharmacol ; 272: 113925, 2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-33592255

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Atractylodes lancea (Thunb.) DC. is a widely used traditional herb that is well known for treating spleen deficiency and diarrhea. According to traditional Chinese medicine (TCM) theory, diarrhea-predominant irritable bowel syndrome (IBS-D) is caused by cold and dampness, resulting in diarrhea and abdominal pain. Nevertheless, the effect and mechanism of Atractylodes on IBS-D are still unclear. AIM OF THE STUDY: This study was designed to confirm the therapeutic effect of Atractylodes lanceolata oil (AO) in a rat model of IBS-D, and to determine the mechanisms by which AO protects against the disease. MATERIALS AND METHODS: The chemical components in AO were determined using gas chromatography-mass spectrometry (GC-MS). The expression levels of 5-hydroxytryptamine (5-HT), vasoactive intestinal peptide (VIP), and surfactant protein (SP) in serum and colon tissue were measured using enzyme-linked immunosorbent assay (ELISA). Reverse transcription-polymerase chain reaction (RT-PCR), western blotting (WB), immunohistochemistry (IHC), and immunofluorescence (IF) were used to elucidate the mechanism of action of AO toward inflammation and the intestinal barrier in a rat model of IBS-D. RESULTS: The 15 chemical substances of the highest concentration in AO were identified using GC-MS. AO was effective against IBS-D in the rat model, in terms of increased body weight, diarrhea grade score, levels of interleukin-10 (IL-10), aquaporin 3 (AQP3), and aquaporin 8 (AQP8), and reduced fecal moisture content, levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), 5-HT, VIP, and SP, while also reducing intestinal injury, as observed using hematoxylin-eosin (HE) staining. In addition, the results indicated that AO increased the mRNA and protein expression levels of stem cell factor (SCF) and c-kit and enhanced the levels of zonula occludens-1 (ZO-1) and occludin, as well as decreased the levels of myosin light chain kinase (MLCK) and inhibited the phosphorylation of myosin light chain 2 (p-MLC2). CONCLUSIONS: AO was found to be efficacious in the rat model of IBS-D. AO inhibited the SCF/c-kit pathway, thereby reducing inflammation and protecting against intestinal barrier damage via the MLCK/MLC2 pathway.


Assuntos
Atractylodes/química , Síndrome do Intestino Irritável/tratamento farmacológico , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Óleos de Plantas/farmacologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Células-Tronco/metabolismo , Animais , Aquaporinas/genética , Aquaporinas/metabolismo , Colite/metabolismo , Citocinas/genética , Citocinas/metabolismo , Diarreia/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Síndrome do Intestino Irritável/patologia , Cadeias Leves de Miosina/genética , Quinase de Cadeia Leve de Miosina/genética , Óleos de Plantas/química , Óleos de Plantas/uso terapêutico , Proteínas Proto-Oncogênicas c-kit/genética , Ratos Sprague-Dawley , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Células-Tronco/genética , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
20.
Mediators Inflamm ; 2021: 8879227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33488295

RESUMO

Omega-3 polyunsaturated fatty acids (omega-3 PUFAs), which are essential fatty acids that humans should obtain from diet, have potential benefits for human health. In addition to altering the structure and function of cell membranes, omega-3 PUFAs (docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), alpha-linolenic acid (ALA), and docosapentaenoic acid (DPA)) exert different effects on intestinal immune tolerance and gut microbiota maintenance. Firstly, we review the effect of omega-3 PUFAs on gut microbiota. And the effects of omega-3 PUFAs on intestinal immunity and inflammation were described. Furthermore, the important roles of omega-3 PUFAs in maintaining the balance between gut immunity and the gut microbiota were discussed. Additional factors, such as obesity and diseases (NAFLD, gastrointestinal malignancies or cancer, bacterial and viral infections), which are associated with variability in omega-3 PUFA metabolism, can influence omega-3 PUFAs-microbiome-immune system interactions in the intestinal tract and also play roles in regulating gut immunity. This review identifies several pathways by which the microbiota modulates the gut immune system through omega-3 PUFAs. Omega-3 supplementation can be targeted to specific pathways to prevent and alleviate intestinal diseases, which may help researchers identify innovative diagnostic methods.


Assuntos
Ácidos Graxos Ômega-3/sangue , Microbioma Gastrointestinal/fisiologia , Intestinos/imunologia , Animais , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/sangue , Ácidos Graxos Insaturados/sangue , Microbioma Gastrointestinal/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA