Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 125: 155325, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295663

RESUMO

BACKGROUND: Sepsis and its associated heart failure are among the leading causes of death. Gramine, a natural indole alkaloid, can be extracted from a wide variety of raw plants, and it exhibits therapeutic potential in pathological cardiac hypertrophy. However, the effect of gramine on inflammatory cardiomyopathy, particularly sepsis-induced myocardial injury, remains an unexplored area. PURPOSE: To determine the role of gramine in sepsis-induced myocardial dysfunction and explore its underlying mechanism. STUDY DESIGN AND METHODS: In mice, sepsis was established by intraperitoneally injecting lipopolysaccharide (LPS, 10 mg/kg). Subsequently, the effects of gramine administration (50 or 100 mg/kg) on LPS-triggered cardiac dysfunction in mice were investigated. For in vitro studies, isolated primary cardiomyocytes were used to assess the effect of gramine (25 or 50 µM) on LPS-induced apoptosis and inflammation. Additionally, molecular docking, co-immunoprecipitation and ubiquitination analyzes were conducted to explore the underlying mechanisms. RESULTS: Gramine visibly ameliorated sepsis-induced cardiac dysfunction, inflammatory response, and mortality in vivo. Moreover, it significantly alleviated LPS-induced apoptotic and inflammatory responses in vitro. Furthermore, target prediction for gramine using the SuperPred website indicated that the nuclear factor NF-κB p105 subunit was one of the molecules ranked in priority order with a high model accuracy and a high probability score. Molecular docking studies demonstrated that gramine effectively docked to the death domain of NF-κB p105. Mechanistic studies revealed that gramine suppressed the processing of NF-κB p105 to p50 by inhibiting NF-κB p105 ubiquitination. Additionally, the protective effect of gramine on cardiac injury was almost abolished by overexpressing NF-κB p105. CONCLUSION: Gramine is a promising bioactive small molecule for treating sepsis-induced myocardial dysfunction, which acts by docking to NF-κB p105 and inhibiting NF-κB p105 ubiquitination, thus preventing its processing to NF-κB p50. Therefore, gramine holds potential as a clinical drug for treating myocardial depression during sepsis.


Assuntos
Cardiomiopatias , Cardiopatias , Sepse , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos , Simulação de Acoplamento Molecular , Alcaloides Indólicos , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Ubiquitinação , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo
2.
Phytomedicine ; 114: 154779, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37023527

RESUMO

BACKGROUND: Gramine, also named 3-(N,N-dimethylaminomethyl) indole, is a indole alkaloid. It is mainly extracted from various natural raw plants. Despite being the simplest 3-aminomethylindole, Gramine has broad pharmaceutical and therapeutic effects, such as vasodilatation, antioxidation, mitochondrial bioenergetics-related effects, and angiogenesis via modulation of TGFß signaling. However, there is little information available about Gramine's role in heart disease, especially pathological cardiac hypertrophy. PURPOSE: To investigate Gramine's effect on pathological cardiac hypertrophy and clarify the mechanisms behind its action. METHODS: In the in vitro experiment, Gramine (25 µM or 50 µM) was used to investigate its role in Angiotensin II-induced primary neonatal rat cardiomyocytes (NRCMs) hypertrophy. In the in vivo experiment, Gramine (50 mg/kg or 100 mg/kg) was administrated to investigate its role in transverse aortic constriction (TAC) surgery mice. Additionally, we explored the mechanisms underlying these roles through Western blot, Real-time PCR, genome-wide transcriptomic analysis, chromatin immunoprecipitation and molecular docking studies. RESULTS: The in vitro data demonstrated that Gramine treatment obviously improved primary cardiomyocyte hypertrophy induced by Angiotensin II, but had few effects on the activation of fibroblasts. The in vivo experiments indicated that Gramine significantly mitigated TAC-induced myocardial hypertrophy, interstitial fibrosis and cardiac dysfunction. Mechanistically, RNA sequencing and further bioinformatics analysis demonstrated that transforming growth factor ß (TGFß)-related signaling pathway was enriched significantly and preferentially in Gramine-treated mice as opposed to vehicle-treated mice during pathological cardiac hypertrophy. Moreover, this cardio-protection of Gramine was found to mainly involved in TGFß receptor 1 (TGFBR1)- TGFß activated kinase 1 (TAK1)-p38 MAPK signal cascade. Further exploration showed that Gramine restrained the up-regulation of TGFBR1 by binding to Runt-related transcription factor 1 (Runx1), thereby alleviating pathological cardiac hypertrophy. CONCLUSION: Our findings provided a substantial body of evidence that Gramine possessed a potential druggability in pathological cardiac hypertrophy via suppressing the TGFBR1-TAK1-p38 MAPK signaling axis through interaction with transcription factor Runx1.


Assuntos
Angiotensina II , Subunidade alfa 2 de Fator de Ligação ao Core , Ratos , Camundongos , Animais , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Angiotensina II/farmacologia , Simulação de Acoplamento Molecular , Cardiomegalia/metabolismo , Miócitos Cardíacos , Transdução de Sinais , Alcaloides Indólicos/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Sci Rep ; 6: 23025, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26964694

RESUMO

Positive evidence from clinical trials has fueled growing acceptance of traditional Chinese medicine (TCM) for the treatment of cardiac diseases; however, little is known about the underlying mechanisms. Here, we investigated the nature and underlying mechanisms of the effects of YiXin-Shu (YXS), an antioxidant-enriched TCM formula, on myocardial ischemia/reperfusion (MI/R) injury. YXS pretreatment significantly reduced infarct size and improved viable myocardium metabolism and cardiac function in hypercholesterolemic mice. Mechanistically, YXS attenuated myocardial apoptosis by inhibiting the mitochondrial mediated apoptosis pathway (as reflected by inhibition of mitochondrial swelling, cytochrome c release and caspase-9 activity, and normalization of Bcl-2 and Bax levels) without altering the death receptor and endoplasmic reticulum-stress death pathways. Moreover, YXS reduced oxidative/nitrative stress (as reflected by decreased superoxide and nitrotyrosine content and normalized pro- and anti-oxidant enzyme levels). Interestingly, YXS upregulated endogenous nuclear receptors including LXRα, PPARα, PPARß and ERα, and in-vivo knockdown of cardiac-specific LXRα significantly blunted the cardio-protective effects of YXS. Collectively, these data show that YXS is effective in mitigating MI/R injury by suppressing mitochondrial mediated apoptosis and oxidative stress and by upregulating LXRα, thereby providing a rationale for future clinical trials and clinical applications.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Coração/efeitos dos fármacos , Receptores X do Fígado/biossíntese , Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Caspase 9/biossíntese , Combinação de Medicamentos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Receptores X do Fígado/genética , Medicina Tradicional Chinesa , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA