Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 118: 154942, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421767

RESUMO

BACKGROUND: The continuous evolution of SARS-CoV-2 has underscored the development of broad-spectrum prophylaxis. Antivirals targeting the membrane fusion process represent promising paradigms. Kaempferol (Kae), an ubiquitous plant flavonol, has been shown efficacy against various enveloped viruses. However, its potential in anti-SARS-CoV-2 invasion remains obscure. PURPOSE: To evaluate capabilities and mechanisms of Kae in preventing SARS-CoV-2 invasion. METHODS: To avoid interference of viral replication, virus-like particles (VLPs) constructed with luciferase reporter were applied. To investigate the antiviral potency of Kae, human induced pluripotent stem cells (hiPSC)-derived alveolar epithelial cells type II (AECII) and human ACE2 (hACE2) transgenic mice were utilized as in vitro and in vivo models, respectively. Using dual split protein (DSP) assays, inhibitory activities of Kae in viral fusion were determined in Alpha, Delta and Omicron variants of SARS-CoV-2, as well as in SARS-CoV and MERS-CoV. To further reveal molecular determinants of Kae in restricting viral fusion, synthetic peptides corresponding to the conserved heptad repeat (HR) 1 and 2, involved in viral fusion, and the mutant form of HR2 were explored by circular dichroism and native polyacrylamide gel electrophoresis. RESULTS: Kae inhibited SARS-CoV-2 invasion both in vitro and in vivo, which was mainly attributed to its suppressive effects on viral fusion, but not endocytosis, two pathways that mediate viral invasion. In accordance with the proposed model of anti-fusion prophylaxis, Kae functioned as a pan-inhibitor of viral fusion, including three emerged highly pathogenic coronaviruses, and the currently circulating Omicron BQ.1.1 and XBB.1 variants of SARS-CoV-2. Consistent with the typical target of viral fusion inhibitors, Kae interacted with HR regions of SARS-CoV-2 S2 subunits. Distinct from previous inhibitory fusion peptides which prevent the formation of six-helix bundle (6-HB) by competitively interacting with HRs, Kae deformed HR1 and directly reacted with lysine residues within HR2 region, the latter of which was considered critical for the preservation of stabilized S2 during SARS-CoV-2 invasion. CONCLUSIONS: Kae prevents SARS-CoV-2 infection by blocking membrane fusion and possesses a broad-spectrum anti-fusion ability. These findings provide valuable insights into potential benefits of Kae-containing botanical products as a complementary prophylaxis, especially during the waves of breakthrough infections and re-infections.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Humanos , SARS-CoV-2 , Sequência de Aminoácidos , Quempferóis/farmacologia , Glicoproteína da Espícula de Coronavírus , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos/química , Antivirais/farmacologia , Antivirais/uso terapêutico
2.
Front Pharmacol ; 12: 640782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054522

RESUMO

The novel coronavirus disease 2019 (COVID-19) has become a matter of international concern as the disease is spreading exponentially. Statistics showed that infected patients in China who received combined treatment of Traditional Chinese Medicine and modern medicine exhibited lower fatality rate and relatively better clinical outcomes. Both Lian-Hua-Qing-Wen Capsule (LHQWC) and Jin-Hua-Qing-Gan Granule (JHQGG) have been recommended by China Food and Drug Administration for the treatment of COVID-19 and have played a vital role in the prevention of a variety of viral infections. Here, we desired to analyze the broad-spectrum anti-viral capacities of LHQWC and JHQGG, and to compare their pharmacological functions for rational clinical applications. Based on literature mining, we found that both LHQWC and JHQGG were endowed with multiple antiviral activities by both targeting viral life cycle and regulating host immune responses and inflammation. In addition, from literature analyzed, JHQGG is more potent in modulating viral life cycle, whereas LHQWC exhibits better efficacies in regulating host anti-viral responses. When translating into clinical applications, oral administration of LHQWC could be more beneficial for patients with insufficient immune functions or for patients with alleviated symptoms after treatment with JHQGG.

3.
AAPS J ; 16(3): 400-12, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24557747

RESUMO

Differentiation of pluripotent stem cells, PSCs, towards neural lineages has attracted significant attention, given the potential use of such cells for in vitro studies and for regenerative medicine. The present experiments were designed to identify bioactive peptides which direct PSC differentiation towards neural cells. Fifteen peptides were designed based on NCAM, FGFR, and growth factors sequences. The effect of peptides was screened using a mouse embryonic stem cell line expressing luciferase dual reporter construct driven by promoters for neural tubulin and for elongation factor 1. Cell number was estimated by measuring total cellular DNA. We identified five peptides which enhanced activities of both promoters without relevant changes in cell number. We selected the two most potent peptides for further analysis: the NCAM-derived mimetic FGLL and the synthetic NCAM ligand, Plannexin. Both compounds induced phenotypic neuronal differentiation, as evidenced by increased neurite outgrowth. In summary, we used a simple, but sensitive screening approach to identify the neurogenic peptides. These peptides will not only provide new clues concerning pathways of neurogenesis, but they may also be interesting biotechnology tools for in vitro generation of neurons.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Neurais/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Indicadores e Reagentes , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Neuritos/efeitos dos fármacos , Neuritos/ultraestrutura
4.
Exp Mol Med ; 41(10): 717-27, 2009 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-19561401

RESUMO

Triptolide, a diterpenoid triepoxide from the traditional Chinese medicinal herb Tripterygium wilfordii Hook. f., is a potential treatment for autoimmune diseases as well a possible anti-tumor agent. It inhibits proliferation of colorectal cancer cells in vitro and in vivo. In this study, its ability to block progress of colitis to colon cancer, and its molecular mechanism of action are investigated. A mouse model for colitis-induced colorectal cancer was used to test the effect of triptolide on cancer progression. Treatment of mice with triptolide decreased the incidence of colon cancer formation, and increased survival rate. Moreover, triptolide decreased the incidence of tumors in nude mice inoculated with cultured colon cancer cells dose-dependently. In vitro, triptolide inhibited the proliferation, migration and colony formation of colon cancer cells. Secretion of IL6 and levels of JAK1, IL6R and phosphorylated STAT3 were all reduced by triptolide treatment. Triptolide prohibited Rac1 activity and blocked cyclin D1 and CDK4 expression, leading to G1 arrest. Triptolide interrupted the IL6R-JAK/STAT pathway that is crucial for cell proliferation, survival, and inflammation. This suggests that triptolide might be a candidate for prevention of colitis induced colon cancer because it reduces inflammation and prevents tumor formation and development.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Diterpenos/administração & dosagem , Fenantrenos/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/biossíntese , Animais , Colite/complicações , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Sulfato de Dextrana/toxicidade , Dimetilidrazinas/toxicidade , Compostos de Epóxi/administração & dosagem , Humanos , Interleucina-6/biossíntese , Janus Quinases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Transplante de Neoplasias , Fator de Transcrição STAT3/metabolismo , Carga Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA