Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Rep ; 13(1): 20367, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989759

RESUMO

The emergence of antibacterial resistance (ABR) is an urgent and complex public health challenge worldwide. Antibiotic resistant genes (ARGs) are considered as a new pollutant by the WHO because of their wide distribution and emerging prevalence. The role of environmental factors in developing ARGs in bacterial populations is still poorly understood. Therefore, the relationship between environmental factors and bacteria should be explored to combat ABR and propose more tailored solutions in a specific region. Here, we collected and analyzed surface water samples from Yangtze Delta, China during 2021, and assessed the nonlinear association of environmental factors with ARGs through a sigmoid model. A high abundance of ARGs was detected. Amoxicillin, phosphorus (P), chromium (Cr), manganese (Mn), calcium (Ca), and strontium (Sr) were found to be strongly associated with ARGs and identified as potential key contributors to ARG detection. Our findings suggest that the suppression of ARGs may be achieved by decreasing the concentration of phosphorus in surface water. Additionally, Group 2A light metals (e.g., magnesium and calcium) may be candidates for the development of eco-friendly reagents for controlling antibiotic resistance in the future.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Antibacterianos/análise , Rios/microbiologia , Cálcio/farmacologia , Bactérias/genética , China , Resistência Microbiana a Medicamentos/genética , Água/farmacologia , Fósforo/farmacologia
2.
PLoS One ; 17(9): e0271098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36084019

RESUMO

INTRODUCTION: Oxidative stress is involved in the occurrence and development of multiple diseases. Acupuncture shows an excellent clinical efficacy in practical application but its mechanism remains unclear. This systematic review and meta-analysis was aimed at assessing the effect of acupuncture on oxidative stress in animal models. METHODS: PubMed, Embase, and Web of Science database were retrieved for randomized controlled trials about acupuncture on oxidative stress in animal models from inception to August 2021. Two reviewers independently screened and extracted articles according to inclusion and exclusion criteria. We used the mean difference (MD)/standardized mean difference (SMD) to perform an effect size analysis and selected fixed-effect or random-effect models to pool the data, depending on a 95% confidence interval (CI). RESULTS: A total of 12 studies comprising 125 samples were included in the quantitative meta-analysis. Compared with sham acupuncture, acupuncture (manual acupuncture, electropuncture, and laser acupuncture) reduced the level of malondialdehyde (SMD, -3.03; CI, -4.40, -1.65; p < 0.00001) and increased the levels of superoxide dismutase (SMD, 3.39; CI, 1.99, 4.79; p < 0.00001), glutathione peroxidase (SMD, 2.21; CI, 1.10, 3.32; p < 0.00001), and catalase (SMD, 2.80; CI, 0.57, 5.03; p = 0.01). CONCLUSION: This meta-analysis indicated that acupuncture can regulate oxidative stress by lowering the lipid peroxidation and activating the antioxidant enzyme system. In consideration of heterogeneity between studies, future studies should be performed by complying with strict standards and increasing sample size in animal experiments to reduce bias.


Assuntos
Terapia por Acupuntura , Animais , Glutationa Peroxidase , Malondialdeído/farmacologia , Modelos Animais , Estresse Oxidativo
3.
Artigo em Inglês | MEDLINE | ID: mdl-33497845

RESUMO

Primary dysmenorrhea is a prevalent gynecological disorder that severely affects the quality of life in women. Yuanhu Zhitong oral liquid (YZOL) is a standardized herbal preparation frequently used in clinical practice and is a promising alternative therapy for primary dysmenorrhea. The findings of previous studies show that YZOL exhibits significant analgesic and spasmolytic effects, however, the involved mechanism remains unclear. Herein, we performed an untargeted plasma metabolomic analysis on a mouse model of oxytocin-induced primary dysmenorrhea to investigate the underlying mechanism of YZOL. We used multivariate and pathway-driven analyses to uncover the treatment targets linked with YZOL therapy and verified the possible mechanisms through biochemical assays. Therefore, we identified 47 plasma biomarkers primarily associated with sphingolipid metabolism, amino acid metabolism, arachidonic acid metabolism, and biosynthesis of steroid hormone as well as primary bile acid. We established that the analgesic effect of YZOL on primary dysmenorrhea relies on multiple constituents that act on multiple targets in multiple pathways. Our correlation analysis showed significant correlations between the biomarkers and biochemical indicators, which is of considerable significance in elucidating the YZOL mechanisms. Moreover, we identified some novel prospective biomarkers linked to primary dysmenorrhea, including bile acids. Collectively, these data provide new insights into the mechanism of YZOL and provide evidence for the analgesic effect of YZOL in the treatment of primary dysmenorrhea.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Dismenorreia/metabolismo , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Administração Oral , Analgésicos/administração & dosagem , Analgésicos/farmacologia , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/administração & dosagem , Feminino , Camundongos , Camundongos Endogâmicos ICR
4.
J Tradit Chin Med ; 40(1): 28-37, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32227763

RESUMO

OBJECTIVE: To investigate the efficacy of Bushen Kangshuai (BS-KS) tablet on autophagy and polarization in mouse macrophage RAW 264.7. MEYHODS: Macrophage autophagy was induced by oxidized low-density lipoprotein (100 µg/mL). To detect the levels of autophagy, macrophage were transfected with double fluorescence LC3 autophagy adenovirus, then the numbers of autophagosomes and autophagic lysosomes were asessed by confocal microscopy. The autophagy related proteins expression of PI3K, Akt, phospho-mAkt (p-Akt) and mTOR, phospho-mTOR ([p-TOR), p62, microtubule-associated protein 1 (LC3-Ⅱ)were determined by western blotting. The macrophage polarization model was induced by lipopolysaccharide (1 µg/mL). The mRNA levels of iNOS, CD86 (M1 macrophages marker molecules), and CD206, Arg-1 (M2 macrophages marker molecules) were detected by real-time quantitative PCR. The concentration of cytokines TNF-α and IL-10 was determined by enzyme-linked immunosorbent assay. The protein expression of nuclear proteins PPAR-γ, NF-κB, and cytoplasmic protein IKB α was determined by western blotting. RESULTS: The expression of the autophagy-related protein LC3-Ⅱ was increased and the expression of p62 was decreased in the BS-KS intervention group. The protein expression of PI3K, p-Akt, and p-mTOR was also reduced. BS-KS also inhibited the mRNA expression of iNOS and CD86 on M2 macrophage, but promoted the expression of CD206 and Arg-1 on M2 macrophage. With respect to the regulation of inflammatory factors, BS-KS could inhibit the secretion of pro-inflammatory TNF-α and promote the secretion of anti-inflammatory IL-10. It also inhibited the protein expression of IKB-α and NF-κB, and promoted the expression of nuclear protein PPAR-γ. CONCLUSION: We believe that BS-KS promotes macrophage autophagy by increasing the level of autophagy protein and inhibiting the PI3K/Akt/mTOR signaling pathway. Furthermore, BS-KS seems to inhibit macrophage M1 polarization and promote M2 polarization via the PPAR gamma /NF-κB signaling pathway, thus playing an inhibitory role in atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Autofagia/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Animais , Aterosclerose/metabolismo , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Biomarcadores/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , Camundongos , Células RAW 264.7 , Comprimidos
5.
Theranostics ; 10(3): 1090-1106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31938053

RESUMO

Background and Purpose: Atherosclerosis is an underlying cause of coronary heart disease. Foam cell, a hallmark of atherosclerosis, is prominently derived from monocyte-differentiated macrophage, and vascular smooth muscle cells (VSMCs) through unlimitedly phagocytizing oxidized low-density lipoprotein (oxLDL). Therefore, the inhibition of monocyte adhesion to endothelium and uptake of oxLDL might be a breakthrough point for retarding atherosclerosis. Formononetin, an isoflavone extracted from Astragalus membranaceus, has exhibited multiple inhibitory effects on proatherogenic factors, such as obesity, dyslipidemia, and inflammation in different animal models. However, its effect on atherosclerosis remains unknown. In this study, we determined if formononetin can inhibit atherosclerosis and elucidated the underlying molecular mechanisms. Methods: ApoE deficient mice were treated with formononetin contained in high-fat diet for 16 weeks. After treatment, mouse aorta, macrophage and serum samples were collected to determine lesions, immune cell profile, lipid profile and expression of related molecules. Concurrently, we investigated the effect of formononetin on monocyte adhesion, foam cell formation, endothelial activation, and macrophage polarization in vitro and in vivo. Results: Formononetin reduced en face and aortic root sinus lesions size. Formononetin enhanced lesion stability by changing the composition of plaque. VSMC- and macrophage-derived foam cell formation and its accumulation in arterial wall were attenuated by formononetin, which might be attributed to decreased SRA expression and reduced monocyte adhesion. Formononetin inhibited atherogenic monocyte adhesion and inflammation. KLF4 negatively regulated the expression of SRA at transcriptional and translational level. Conclusions: Our study demonstrate that formononetin can substantially attenuate the development of atherosclerosis via regulation of interplay between KLF4 and SRA, which suggests the formononetin might be a novel therapeutic approach for inhibition of atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Células Espumosas/efeitos dos fármacos , Isoflavonas/uso terapêutico , Fatores de Transcrição Kruppel-Like/metabolismo , Receptores Depuradores Classe A/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Espumosas/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Miócitos de Músculo Liso
6.
J Ethnopharmacol ; 239: 111677, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30615921

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shengmai injection (SMI) is a classical traditional Chinese medicine (TCM) officially recorded in Pharmacopoeia of the People's Republic of China (version 2015) and has long been used to treat heart failure in China. However scientific evidence for the anti-oxidative stress potential of SMI used in traditional medicine is lacking. AIM OF STUDY: The present study aimed to evaluate the efficacy of SMI in alleviating H2O2­induced Oxidative Stress the underlying mechanisms MATERIALS AND METHODS: H2O2-induced oxidative stress model of cardiomyocytes was established with primary cultured neonatal rat cardiomyocytes. CCK8 cell viability assay and lacatate dehydrogenase cytotoxicity assay were performed to ensure the safety dose and lowest effective dose for the mode employing CCK-8 cell viability assay kit and lactate dehydrogenase cytotoxicity assay kit. ROS levels were determined using CM-H2DCFDA fluorescent probe in cardiomyocytes with H2O2-induced oxidative stress. The change of NAD(P)H level in cardiomyocytes was evaluated during the process of oxidative stress. The content of myocardial cytosolic Ca2+ and Ca2+ was determined using Fura-2/AM and Rhod 2-AM fluorescent probe in mitochondrial in the process of oxidative stress. Annexin V-FITC/PI double staining was applied to examine the apoptotic cells in cardiomyocytes with oxidative stress. To identify the apoptosis after oxidative stress myocardial cells with the application of Annexin V-FITC/PI double staining apoptosis detection kit. Quantitative polymerase chain reaction (RT-PCR) was applied to measure the expression of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSR). Western blot was performed to observe the phosphorylation of AKT and ERK1/2. RESULTS: SMI was shown to significantly attenuate oxidative stress-induced cell proliferation arrest and apoptosis in neonatal rat cardiomyocytes. In addition, SMI treatment could decrease the production of reactive oxygen species (ROS), nicotinamide adenine dinucleotide (NADH) and malondialdehyde (MDA), and reduce the overloads of cytoplasmic Ca2+ and mitochondrial Ca2+ induced by H2O2. SMI could also restore the mRNA expression and activities of SOD, GSR, and CAT suppressed by H2O2. Mechanistically, SMI upregulated intracellular AKT phosphorylation and downregulate ERK1/2 phosphorylation in H2O2-treated cardiomyocytes. Pretreatment with LY294002, an AKT phosphorylation inhibitor, suppressed the protective role of SMI in cardiomyocytes, while pretreatment with PD98059, an ERK1/2 phosphorylation inhibitor, enhanced the effect of SMI. CONCLUSIONS: In conclusion, SMI may attenuate oxidative stress-induced damage in cardiomyocytes potentially through the AKT and ERK1/2 pathway and can function as a promising injectable traditional Chinese medicine to treat oxidative stress-induced injury.


Assuntos
Antioxidantes/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Peróxido de Hidrogênio/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Combinação de Medicamentos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Malondialdeído/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley
7.
Neural Regen Res ; 12(12): 2000-2006, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29323038

RESUMO

Acupuncture at Shuigou (GV26) shows good clinical efficacy for treating stroke, but its mechanism remains poorly understood. In this study, a cerebral infarction model of ischemia/reperfusion injury received electroacupuncture at GV26 (15 Hz and 1 mA, continuous wave [biphasic pulses], for 5 minutes). Electroacupuncture effectively promoted regional cerebral blood flow on the infarct and non-infarct sides, increased infarct lesions, lectin, and number of blood vessels, upregulated von Willebrand factor and cell proliferation marker Ki67 expression, and diminished neurological severity score. These findings confirm that electroacupuncture at GV26 promotes establishment of collateral circulation and angiogenesis, and improves neurological function.

8.
Thromb Res ; 135(1): 137-45, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25466843

RESUMO

Salvianolic acid B (SAB) is a hydrophilic component isolated from the Chinese herb Salviae miltiorrhizae, which has been used clinically for the treatment of ischemic cardiovascular and cerebrovascular diseases. Platelets-mediated vascular inflammatory response contributes to the initiation and progression of atherosclerosis. In this paper, we focus on the modulating effects of SAB on the inflammatory reaction of endothelial cells triggered by activated platelets. Human umbilical vein endothelial cells (EA.hy926) were pretreated with SAB followed by co-culture with ADP-activated platelets. Adhesion of platelets to endothelial cells was observed by amorphological method. The activation of nuclear factor-kappa B was evaluated by NF-κB p65 nuclear translocation and the protein phosphorylation. A determination of the pro-inflammatory mediators (ICAM-1, IL-1ß, IL-6, IL-8, MCP-1) mRNA and protein were also conducted. In addition, the inhibitory effects of SAB on platelets activation were also evaluated using a platelet aggregation assay and assessing the release level of soluble P-selectin. The results showed that SAB dose-dependently inhibited ADP- or α-thrombin-induced human platelets aggregation in platelet rich plasma (PRP) samples, and significantly decreased soluble P-selectin release from both agonists stimulated washed platelets. It was also found that pre-treatment with SAB reduced adhesion of ADP-activated platelets to EA.hy926 cells and inhibited NF-κB activation. In addition, SAB significantly suppressed pro-inflammatory mediators mRNA and protein in EA.hy926 cells in a dose-dependent manner. These results indicated that, in addition to its inhibitory effects on platelets activation, SAB was able to attenuate platelets-mediated inflammatory responses in endothelial cells even if the platelets had already been activated. This anti-inflammatory effect was related to the inhibition of NF-κB activation. Our findings suggest that SAB may be a potential candidate for the treatment of various atherosclerotic diseases.


Assuntos
Benzofuranos/química , Plaquetas/citologia , Células Endoteliais da Veia Umbilical Humana/citologia , Adesão Celular , Células Cultivadas , Técnicas de Cocultura , Progressão da Doença , Medicamentos de Ervas Chinesas/química , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Inflamação , Microscopia de Fluorescência , NF-kappa B/metabolismo , Selectina-P/sangue , Preparações de Plantas , Agregação Plaquetária , RNA/análise , Salvia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA