Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Nutr ; 61(4): 1931-1942, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35067753

RESUMO

PURPOSE: The present study aimed to investigate fish oil plus vitamin D3 (FO + D) supplementation on biomarkers of non-alcoholic fatty liver disease (NAFLD). METHODS: In a 3-month randomized controlled trial, 111 subjects with NAFLD, aged 56.0 ± 15.9 y, were randomized into FO + D group (n = 37), fish oil group (FO, n = 37) or corn oil group (CO, n = 37). The subjects consumed the following capsules (3 g/day), which provided 2.34 g/day of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) + 1680 IU vitamin D3 (FO + D group), or 2.34 g/day of EPA + DHA (FO group), or 1.70 g/d linoleic acid (CO group). RESULTS: Using multivariable-adjusted general linear model, there were significant net reductions in serum alanine aminotransferase (ALT), and triacylglycerol (TAG) and TNF-α levels in the FO + D and FO groups, compared with the control group (P < 0.05). The supplemental FO + D also showed significant reductions in insulin (- 1.58 ± 2.00 mU/L vs. - 0.63 ± 1.55 mU/L, P = 0.050) and IL-1ß (- 6.92 ± 7.29 ng/L vs. 1.06 ± 5.83 ng/L, P < 0.001) in comparison with control group. Although there were no significant differences between FO + D and FO groups regarding biochemical parameters, supplemental FO + D showed decreases in ALT (from 26.2 ± 13.5 U/L to 21.4 ± 9.6 U/L, P = 0.007), aspartate aminotransferase (AST, from 22.5 ± 7.0 U/L to 20.2 ± 4.0 U/L, P = 0.029), HOMA-IR (from 3.69 ± 1.22 to 3.38 ± 1.10, P = 0.047), and TNF-α (from 0.43 ± 0.38 ng/L to 0.25 ± 0.42 ng/L, P < 0.001) levels following the intervention. CONCLUSION: The present study demonstrated that groups supplemented with FO + D and FO had similar beneficial effects on biomarkers of hepatocellular damage and plasma TAG levels in subjects with NAFLD, while in the FO + D group, there were some suggestive additional benefits compared with FO group on insulin levels and inflammation. TRIAL REGISTRATION: ChiCTR1900024866.


Assuntos
Colecalciferol , Óleos de Peixe , Hepatopatia Gordurosa não Alcoólica , Biomarcadores , Colecalciferol/administração & dosagem , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Óleos de Peixe/administração & dosagem , Humanos , Insulina , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Food Funct ; 11(11): 9789-9800, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33079126

RESUMO

Potato resistant starch (RS) was prepared by microwave-toughening treatment (MTT). This study investigated the beneficial effects of RS on high-fat diet (HFD)-induced hyperlipidemia in C57BL/6J mice by evaluating changes in the gut microbiota. The mice were fed low-fat diet with corn starch, HFD with corn starch, HFD with potato starch (HFP), or HFD with RS (HFR) for 6 weeks. The results showed that the HFR group had lower body weight and total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels compared with the HFP group. Moreover, the brown adipose tissue levels of uncoupling protein 1 (UCP-1), ß3-adrenoceptor (ß3-AR), peroxisome proliferator-activated receptor-γ (PPAR-γ), and PPAR-γ coactivator-1α (PGC-1α) were increased. Our results showed that RS supplementation increased the Bacteroidetes/Firmicutes ratio and the abundance of short-chain fatty acid-producing Allobaculum, Ruminococcus, and Blautia. Our data suggest that RS prepared by MTT may be used as a prebiotic agent to prevent gut dysbiosis and obesity-related chronic diseases, such as hyperlipidemia, and obesity.


Assuntos
Solanum tuberosum , Amido/farmacologia , Tecido Adiposo Marrom/metabolismo , Animais , Culinária , Alimento Funcional , Microbioma Gastrointestinal/efeitos dos fármacos , Hiperlipidemias/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , Prebióticos , Organismos Livres de Patógenos Específicos , Amido/administração & dosagem , Amido/metabolismo , Proteína Desacopladora 1/metabolismo
3.
Biomed Res Int ; 2018: 4398086, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29744358

RESUMO

This study aims to investigate the effect of Chinese diet pattern of fat content (30% or 36.06%), n-6/n-3 polyunsaturated fatty acid (PUFA) ratio (5 : 1 or 9 : 1), and cholesterol content (0.04 or 0.057 g/kg total diet) on lipid profile using a rat model. Results showed that rats' body weights (BWs) were controlled by the simultaneous intakes of cholesterol level of 0.04 g/kg total diet and n-6/n-3 ratio of 5 : 1. In addition, under high-fat diet, increased cholesterol feeding led to increased total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels and decreased triacylglycerols (TG) in rats' plasma. However, high density lipoprotein cholesterol (HDL-C) level and the ratios of HDL-C/LDL-C and HDL-C/TC in rats' plasma increased in response to simultaneous intakes of low n-6/n-3 ratio (5 : 1) and cholesterol (0.04 g/kg total diet) even under high-fat diet. Moreover, as the n-6/n-3 PUFA ratio in the diet decreased, the proportion of n-3 PUFAs increased in plasma, liver, and muscle and resulted in the decrease of n-6/n-3 PUFA ratio.


Assuntos
Peso Corporal/efeitos dos fármacos , Colesterol na Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Peso Corporal/fisiologia , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Masculino , Ratos , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA