Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555220

RESUMO

High-fat exposure leads to impaired intestinal barrier function by disrupting the function of intestinal stem cells (ISCs); however, the exact mechanism of this phenomenon is still not known. We hypothesize that high concentrations of deoxycholic acid (DCA) in response to a high-fat diet (HFD) affect aryl hydrocarbon receptor (AHR) signalling in ISCs and the intestinal barrier. For this purpose, C57BL/6J mice feeding on a low-fat diet (LFD), an HFD, an HFD with the bile acid binder cholestyramine, and a LFD with the DCA were studied. We found that high-fat feeding induced an increase in faecal DCA concentrations. An HFD or DCA diet disrupted the differentiation function of ISCs by downregulating AHR signalling, which resulted in decreased goblet cells (GCs) and MUC2, and these changes were reversed by cholestyramine. In vitro experiments showed that DCA downregulated the differentiation function of ISCs, which was reversed by the AHR agonist 6-formylindolo [3,2-b]carbazole (FICZ). Mechanistically, DCA caused a reduction in indoleamine 2,3-dioxygenase 1 (IDO1) in Paneth cells, resulting in paracrine deficiency of the AHR ligand kynurenine in crypts. We demonstrated for the first time that DCA disrupts intestinal mucosal barrier function by interfering with AHR signalling in ISCs. Supplementation with AHR ligands may be a new therapeutic target for HFD-related impaired intestinal barrier function.


Assuntos
Resina de Colestiramina , Receptores de Hidrocarboneto Arílico , Camundongos , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Ácido Desoxicólico/farmacologia , Células-Tronco/metabolismo
2.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166510, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926755

RESUMO

Previously, we reported that the nuclear translocation of Y-box binding protein 1 (YB-1) is induced by transforming growth factor-ß (TGF-ß) and promotes hepatic progenitor cells (HPCs) expansion. Here, we explored the mechanisms underlying YB-1 translocation and the impact of YB-1 on the epithelial-mesenchymal transition (EMT) in HPCs. YB-1flox/floxcre+/- (YB-1f/fcre+/-) mice and YB-1f/fcre-/- mice were fed with a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or a choline-deficient, ethionine-supplemented (CDE) diet. Liver injury and fibrosis were assessed by performing hematoxylin and eosin (HE) and Masson staining. The expression of collagen and EMT-related markers (E-cadherin, N-cadherin, and Snail) was detected by reverse transcription-polymerase chain reaction (RT-PCR), western blotting, and immunofluorescence analyses. Protein kinase B (AKT) expression in HPCs was silenced via RNA interference. Nuclear YB-1 expression in HPCs was detected via western blotting and immunofluorescence analyses. HPC proliferation was detected by immunofluorescence. Our results indicate that YB-1 transcriptionally regulated the biological behavior of HPCs. HPC-specific YB-1 knockout alleviated liver fibrosis in mice fed with DDC or CDE diet. YB-1 nuclear translocation promoted matrix metallopeptidase 9 transcription. YB-1 depletion in HPCs significantly dampened the EMT and inhibited AKT phosphorylation in vitro and in vivo. AKT knockdown compromised TGF-ß-induced YB-1 nuclear translocation, thereby inhibiting the EMT and HPC proliferation. EMT and AKT were highly activated in HPCs in cirrhotic livers. Collectively, our findings indicate that the loss of YB-1 suppressed EMT in HPCs and alleviated liver fibrosis in mice, and that AKT was essential for TGF-ß-induced YB-1 nuclear translocation and HPC proliferation.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas Proto-Oncogênicas c-akt , Animais , Caderinas/metabolismo , Colina/metabolismo , Colágeno/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Etionina/metabolismo , Hematoxilina/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Metaloproteases/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Fatores de Transcrição , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/metabolismo
3.
Eur J Pharmacol ; 921: 174866, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35231468

RESUMO

The proliferation of hepatic progenitor cells (HPCs) contributes to liver regeneration and fibrogenesis during chronic liver injury; however, the mechanism modulating HPC proliferation remains unknown. Y-box binding protein-1 (YB-1) is a transcription factor that regulates the transcription of several genes and is highly expressed in liver injury. We explored the role of YB-1 in HPC proliferation and liver fibrosis. We detected increased expansion of HPCs and elevated levels of YB-1 in HPCs from patients with hepatitis B virus-related fibrosis and choline-deficient ethionine-supplemented or 5-diethoxycarbonyl-1,4-dihydrocollidine diet-induced mice compared with those in control groups. HPC-specific deletion of YB-1 using YB-1flox/flox; Foxl1-Cre+/- mice led to reduced HPC expansion and less collagen deposition in the liver tissues compared with that in Cre-/- mice. In cultured primary HPCs, YB-1 knockdown inhibited HPC proliferation. Further experiments indicated YB-1 negatively regulated p53 expression, and silencing of p53 blocked YB-1 knockdown-mediated inhibition of HPC proliferation. Collectively, YB-1 negatively regulates HPC proliferation and alleviates liver fibrosis by p53.


Assuntos
Cirrose Hepática , Células-Tronco , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Proliferação de Células/genética , Etionina/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Fígado/metabolismo , Cirrose Hepática/patologia , Regeneração Hepática/genética , Camundongos , Células-Tronco/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1868(1): 166290, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662704

RESUMO

Hepatic fibrosis is characterized by excessive extracellular matrix deposition and ductular reactions, manifested as the expansion of hepatic progenitor cells (HPCs). We previously reported that the Y-box binding protein 1 (YB-1) in HPCs is involved in chronic liver injury. In this study, we constructed YB-1f/f Foxl1-Cre mice and investigated the role of YB-1 in HPC expansion in murine choline-deficient, ethionine-supplemented (CDE), and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) models. Liver injury and fibrosis were measured using hematoxylin and eosin (HE), Masson, and Sirius Red staining. HPC proliferation was detected using EdU and immunofluorescence (IF). Autophagic flow was measured by mCherry-GFP-LC3B staining and transmission electron microscopy (TEM). YB-1 expression was measured by immunofluorescence and western blotting. CUT & Tag analysis, chromatin immunoprecipitation, and RT-PCR were performed to explore the regulation of autophagy-related protein 7 (Atg7) transcription by YB-1. Our results indicated that liver injury was accompanied by high expression of YB-1, proliferative HPCs, and activated autophagy in the CDE and DDC models. YB-1f/f Cre+/- mice displayed less liver injury and fibrosis than YB-1f/f Cre-/- mice in the CDE and DDC models. YB-1 promoted proliferation and autophagy of HPCs in vitro and in vivo. Transforming growth factor-ß (TGF-ß) induced YB-1 nuclear translocation and facilitated the proliferation and autophagy of HPCs. YB-1 nuclear translocation promoted the transcription of Atg7, which is essential for TGF-ß/YB-1 mediated HPCs expansion in vitro and in vivo. In summary, YB-1 nuclear translocation induced by TGF-ß in HPCs promotes the proliferation and autophagy of HPCs and Atg7 participates in YB-1-mediated HPC-expansion and liver fibrosis.


Assuntos
Proteína 7 Relacionada à Autofagia/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Cirrose Hepática/genética , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/genética , Animais , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Deficiência de Colina/induzido quimicamente , Deficiência de Colina/genética , Deficiência de Colina/patologia , Modelos Animais de Doenças , Etionina/toxicidade , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Piridinas/toxicidade , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA