Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 155: 292-299, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27131449

RESUMO

With the increased detections of commonly used pharmaceuticals in surface water and wastewater, extensive attentions were paid recently to the fate and transport of these pharmaceuticals in the environment. Amitriptyline (AMI) is a tricyclic antidepressant widely applied to treat patients with anxiety and depression. In this study, the removal of AMI with palygorskite clay (PFl-1) was investigated under different physico-chemical conditions and supplemented by instrumental analyses. The uptake of AMI on PFl-1 was well fitted by the Langmuir isotherm with an adsorption capacity of 0.168 mmol g(-1) at pH 6-7. The AMI uptake was fast and reached equilibrium in 15 min. The X-ray diffraction patterns showed no shift of the (110) peak position of palygorskite after AMI uptake. However, the (001) peak position of the minor component smectite (about 10%) shifted to lower angle as the amounts of AMI input increased. These results suggested surface uptake of AMI on palygorskite and interlayer uptake of AMI in smectite. As smectite is a common component of palygorskite clays, its role in assessing the properties and performances of palygorskite clays for the uptake and removal of contaminants should not be neglected. Overall, the high affinity of AMI for PFl-1 and strong retention of AMI on PFl-1 suggested that it could be a good adsorbent to remove AMI from wastewater. Palygorskite clays can also be a sink for many cationic pharmaceuticals in the environmental of the arid regions.


Assuntos
Silicatos de Alumínio/química , Amitriptilina/química , Poluentes Químicos da Água/química , Adsorção , Amitriptilina/análise , Cátions , Argila , Concentração de Íons de Hidrogênio , Compostos de Magnésio/química , Silicatos/química , Compostos de Silício/química , Águas Residuárias , Água/química , Poluentes Químicos da Água/análise , Difração de Raios X
2.
J Food Drug Anal ; 24(4): 839-847, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28911623

RESUMO

Plant tissue culture technique is widely used in the conservation and utilization of rare and endangered medicinal plants and it is crucial for tissue culture stocks to obtain the ability to produce similar bioactive components as their wild correspondences. In this paper, a headspace gas chromatography-mass spectrometry method combined with chemometric methods was applied to analyze and evaluate the volatile compounds in tissue-cultured and wild Dendrobium huoshanense Cheng and Tang, Dendrobium officinale Kimura et Migo and Dendrobium moniliforme (Linn.) Sw. In total, 63 volatile compounds were separated, with 53 being identified from the three Dendrobium spp. SAMPLES: Different provenances of Dendrobiums had characteristic chemicals and showed remarkable quantity discrepancy of common compositions. The similarity evaluation disclosed that the accumulation of volatile compounds in Dendrobium samples might be affected by their provenance. Principal component analysis showed that the first three components explained 85.9% of data variance, demonstrating a good discrimination between samples. Gas chromatography-mass spectrometry techniques, combined with chemometrics, might be an effective strategy for identifying the species and their provenance, especially in the assessment of tissue-cultured Dendrobium quality for use in raw herbal medicines.


Assuntos
Dendrobium , Técnicas de Cultura , Medicamentos de Ervas Chinesas , Cromatografia Gasosa-Espectrometria de Massas , Plantas Medicinais , Polissacarídeos , Análise de Componente Principal , Técnicas de Cultura de Tecidos , Compostos Orgânicos Voláteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA