Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36426741

RESUMO

Euphorbia pekinensis (EP) is a commonly used Chinese medicine treating edema with potential hepatorenal toxicity. However, its toxic mechanism and prevention are remained to be explored. Oleanolic acid (OA) is a triterpene acid with potential hepatorenal protective activities. We investigated the protective effect and potential mechanism of OA on EP-induced hepatorenal toxicity. In this study, rats were given total diterpenes from EP (TDEP, 16 mg/kg) combined with OA (10, 20, 40 mg/kg) by gavage for 4 weeks. The results showed that TDEP administration could lead to a 3-4-fold increasement in hepatorenal biochemical parameters with histopathological injuries, while OA treatment could ameliorate them in a dose-dependent manner. At microbial and metabolic levels, intestinal flora and host metabolism were perturbed after TDEP administration. The disturbance of bile acid metabolism was the most significant metabolic pathway, with secondary bile acids increasing while conjugated bile acids decreased. OA treatment can improve the disorder of intestinal flora and metabolic bile acid spectrum. Further correlation analysis screened out that Escherichia-Shigella, Phascolarctobacterium, Acetatifactor, and Akkermansia were closely related to the bile acid metabolic disorder. In conclusion, oleanolic acid could prevent hepatorenal toxicity induced by EP by regulating bile acids metabolic disorder via intestinal flora improvement.

2.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1243-1252, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35343151

RESUMO

The present study investigated the effect of Euphorbiae Pekinensis Radix(EPR) on intestinal flora structure before and after vinegar processing and explored the detoxification mechanism of vinegar-processed EPR. In this study, the extraction efficiency of casbane diterpenes from EPR with different solvents was investigated, and the optimal solvent was selected to enrich these components. After 14 days of intragastric administration of total diterpene extract of EPR and vinegar-processed EPR, 16 S rDNA sequencing technology was used to detect the structural changes of intestinal flora. The flora related to the intestinal toxicity of EPR was screened out based on the results of intestinal pathological damage by correlation analysis. The results showed that Soxhlet extraction with chloroform as extraction solvent could enrich Casbane diterpenes in EPR. As revealed by 16 S rDNA sequencing results, EPR could significantly change the structure of intestinal flora, which could be reversed by vinegar-processing EPR. Some intestinal flora candidates might be related to detoxification of vinegar processing. The correlation analysis of intestinal flora candidates and indexes related to intestinal mucosal injury showed that compared with EPR, vinegar-processed EPR could down-regulate the abundance of some pathogenic bacteria such as Mucispirillum, Bilophila, and Ruminiclostridium, and up-regulated some probiotics such as Enterorhabdus, Ruminococcaceae_UCG-014, Barnesiella, and Candidatus. The intestinal toxicity caused by EPR may be related to the disturbance of intestinal flora, and vinegar-processed EPR can improve intestinal flora disorder by up-regulating the abundance of probiotics and down-regulating the abundance of pathogenic bacteria to remodel the intestinal mucosal barrier and reduce toxicity.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Ácido Acético/química , Colo , Medicamentos de Ervas Chinesas/química , Raízes de Plantas
3.
Pharmacol Res Perspect ; 9(5): e00765, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34523246

RESUMO

Gut microbiota disorder will lead to intestinal damage. This study evaluated the influence of total diterpenoids extracted from Euphorbia pekinensis (TDEP) on gut microbiota and intestinal mucosal barrier after long-term administration, and the correlations between gut microbiota and intestinal mucosal barrier were analysed by Spearman correlation analysis. Mice were randomly divided to control group, TDEP groups (4, 8, 16 mg/kg), TDEP (16 mg/kg) + antibiotic group. Two weeks after intragastric administration, inflammatory factors (TNF-α, IL-6, IL-1ß) and LPS in serum, short chain fatty acids (SCFAs) in feces were tested by Enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), respectively. The expression of tight junction (TJ) protein in colon was measured by western blotting. Furthermore, the effects of TDEP on gut microbiota community in mice have been investigated by 16SrDNA high-throughput sequencing. The results showed TDEP significantly increased the levels of inflammatory factors in dose-dependent manners, and decreased the expression of TJ protein and SCFAs, and the composition of gut microbiota of mice in TDEP group was significantly different from that of control group. When antibiotics were added, the diversity of gut microbiota was significantly reduced, and the colon injury was more serious. Finally, through correlation analysis, we have found nine key bacteria (Barnesiella, Muribaculaceae_unclassified, Alloprevotella, Candidatus_Arthromitus, Enterorhabdus, Alistipes, Bilophila, Mucispirillum, Ruminiclostridium) that may be related to colon injury caused by TDEP. Taken together, the disturbance of gut microbiota caused by TDEP may aggravate the colon injury, and its possible mechanism may be related to the decrease of SCFAs in feces, disrupted the expression of TJ protein in colon and increasing the contents of inflammatory factors.


Assuntos
Diterpenos/farmacologia , Euphorbia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas de Junções Íntimas/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Bacteroidetes , Cromatografia Líquida de Alta Pressão , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/microbiologia , Disbiose/metabolismo , Ensaio de Imunoadsorção Enzimática , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/genética , Interleucina-1beta/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Proteínas de Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
4.
Nat Prod Res ; 35(7): 1207-1211, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31315442

RESUMO

Xiaoyaosan is one of the famous formulas treating for liver, spleen and blood deficiency syndrome along Chinese history. Their five main components, paeoniflorin, ferulic acid, glycyrrhizic acid, liquiritin, and atractylenolide I are believed to partly representative of this formula. Ultra performance liquid chromatography method was newly established, UPLC BEH-C18 column (2.1 × 100 mm, 1.7 µm) with acetonitrile - 0.1% phosphate acid gradient elution system, in 0.4 mL/min and the temperature was 30 °C; Detection wavelengths were optimized separately. The five components were linear within their linear range (r ≥ 0.9991), average recovery 97.63%∼102.83%, RSD 1.88%∼4.38%. The newly established method is accurate, rapid, and convenient, with satisfied separation performance to quantify multi-components in formula and preparations of Xiaoyaosan. It will provide a reliable reference for the quality evaluation of both Xiaoyaosan formula and preparations during the process of manufacture, administration and clinical application in the future.


Assuntos
Medicamentos de Ervas Chinesas/química , Compostos Fitoquímicos/análise , Calibragem , Ácidos Cumáricos/análise , Ácidos Cumáricos/química , Flavanonas/análise , Flavanonas/química , Glucosídeos/análise , Glucosídeos/química , Ácido Glicirrízico/análise , Ácido Glicirrízico/química , Lactonas/análise , Lactonas/química , Monoterpenos/análise , Monoterpenos/química , Compostos Fitoquímicos/química , Reprodutibilidade dos Testes , Sesquiterpenos/análise , Sesquiterpenos/química
5.
Front Pharmacol ; 11: 569551, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178019

RESUMO

Herbal medicine (HM) has been widely used to treat diseases for thousands of years and has greatly contributed to the health of human beings. Many new drugs have been developed from HM, such as artemisinin. However, artemisinin has adverse effects, such as renal toxicity. In 1993, a study conducted in Belgium reported for the first time that the root extracts of Aristolochia obliqua S. M. Hwang led to progressive interstitial renal fibrosis. The nephrotoxicity of HM has attracted worldwide attention. More than 100 kinds of HM induce renal toxicity, including some herbs, animal HMs, and minerals. This paper aimed to summarize the HM compounds that cause nephrotoxicity, the mechanisms underlying the toxicity of these compounds, biomarkers of renal injury, and prevention strategies. These findings provide a basis for follow-up studies on the prevention and treatment of HM nephrotoxicity.

6.
Front Pharmacol ; 11: 550497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101019

RESUMO

Tetrastigma hemsleyanum Diels & Gilg (TDG), the family member of Vitaceae, is a traditional herbal medicine in China. The root of TDG can be immediately used after cleaning the muddy soil, and can be dehydrated for dry use. TDG is able to be collected all year round, which is commonly used in the treatment of hepatitis, infantile high fever, snake bite, etc. Based on phytochemistry, the chemical components of TDG are divided into flavonoids, phenolic acids, terpenes, steroids, polysaccharide, and other compounds, showing many pharmacological effects which include anti-tumor, anti-oxidation, anti-inflammatory, antipyretic, analgesic, and immunomodulatory activity, as well as other activities. Currently, TDG involves some problems of the reduction of wild resources, the backward processing methods, and storage difficulties as well as the imperfection of detection methods. Therefore, this review summarizes the literature of the past 20 years, and the purpose of this review is to summarize the recent researches on the phytochemistry, pharmacology, quality control, and clinical application of TDG. The above discussions provide new insights for the future research on TDG.

7.
Phytomedicine ; 68: 153191, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32135457

RESUMO

BACKGROUND: Atractylenolide I (ATL-1) is a natural herbal compound used in traditional Chinese medicine that has exhibited anti-cancer properties. The anti-tumorigenic activity of ATL-1 against colorectal cancer (CRC) and the underlying signaling pathways involved in its mechanisms are examined here. HYPOTHESIS: ATL-1 exerts therapeutic effect against CRC by disrupting glucose metabolism and cancer stem cell maintenance via AKT/mTOR pathway regulation. STUDY DESIGN: In vitro studies were performed in COLO205 and HCT116 CRC cell lines and in vivo studies were conducted in a mouse xenograft model of CRC tumor. METHODS: CRC cells were treated with ATL-1 at various concentrations, with or without inhibitors of AKT or mTOR. Cell proliferation, apoptosis, invasion, stemness maintenance, glucose metabolism, and AKT/mTOR signaling were evaluated. CRC tumor-xenografted mice were treated with an AKT inhibitor and/or ATL-1, and glucose metabolism and stemness maintenance were examined in tumor tissues. RESULTS: ATL-1 significantly inhibited the invasion of CRC cells by inducing their apoptosis, possibly via the excessive production of reactive oxygen species. Glucose metabolism (Warburg effect) was also altered and stem-like traits were suppressed by ATL-1. In addition, ATL-1 effectively acted as an inhibitor or AKT/mTOR by downregulating the phosphorylation of proteins related to the AKT/mTOR pathway. In vivo studies showed that tumor weight and volume were reduced by ATL-1 and that aerobic glycolysis, stemness maintenance, and AKT/mTOR activation were impaired by ATL-1 in colorectal tumors. CONCLUSIONS: ATL-1 acts as an effective agent to suppress colorectal tumor progression, mainly by inhibiting CRC cell proliferation through altering apoptosis, glucose metabolism, and stem-like behavior. These processes were mediated by the AKT/mTOR signaling pathway both in vitro and in vivo. ATL-1 may be a potential agent to be used in molecular-targeted strategies for cancer treatment.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação para Baixo/efeitos dos fármacos , Células HCT116 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Drug Deliv ; 21(4): 293-301, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24156408

RESUMO

Two novel polymer-drug conjugates norcantharidin-poly(vinyl alcohol) and norcantharidin-chitosan (NCTD-PVA and NCTD-CS) were synthesized via alcoholysis reaction and characterized by (1)H-NMR and FTIR. NCTD was released from the conjugates via hydrolysis, faster in PBS (pH 5.0) than that in PBS (pH 7.4). NCTD-PVA and NCTD-CS inhibited human esophageal carcinoma ECA-109 cell and murine breast cancer EMT6 cell growth in a dose-dependent manner. The IC50 values of NCTD, NCTD-PVA and NCTD-CS on ECA-109 cell at 48 h were 9.4 ± 0.9, 55.3 ± 3.0 and 168.8 ± 8.9 µg/ml, respectively, and the IC50 values of the three compounds on EMT6 cell were 3.1 ± 0.3, 30.5 ± 5.4 and 90.7 ± 8.1 µg/ml, respectively. The two conjugates both induced esophageal carcinoma ECA-109 cell apoptosis and arrested cell cycle at the S phase. Caspase-8 and caspase-3 were activated in the ECA-109 cell after incubating with NCTD-PVA or NCTD-CS. The primary in vivo antitumor activity was assessed in the EMT6 tumor-bearing mouse model. NCTD-PVA and NCTD-CS displayed higher tumor inhibition rates than that of free NCTD.


Assuntos
Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Quitosana/administração & dosagem , Álcool de Polivinil/administração & dosagem , Animais , Antineoplásicos/química , Apoptose/fisiologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Linhagem Celular Tumoral , Quitosana/química , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Camundongos , Álcool de Polivinil/química , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA