Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38243960

RESUMO

Osteoarthritis (OA) is a degenerative disease that results in constriction of the joint space due to the gradual deterioration of cartilage, alterations in subchondral bone, and synovial membrane. Recently, scientists have found that OA involves lesions in the whole joint, in addition to joint wear and tear and cartilage damage. Osteoarthritis is often accompanied by a subclinical form of synovitis, which is a chronic, relatively low-grade inflammatory response mainly mediated by the innate immune system. The "immune-joint" axis refers to an interaction of an innate immune response with joint inflammation and the whole joint range. Previous studies have underestimated the role of the immune-joint axis in OA, and there is no related research. For this reason, this review aimed to evaluate the existing evidence on the influence of innate immune mechanisms on the pathogenesis of OA. The innate immune system is the body's first line of defense. When the innate immune system is triggered, it instantly activates the downstream inflammatory signal pathway, causing an inflammatory response, while also promoting immune cells to invade joint synovial tissue and accelerate the progression of OA. We have proposed the concept of the "immune-joint" axis and explored it from two aspects of Traditional Chinese Medicine (TCM) theory and modern medical research, such as the innate immunity and OA, macrophages and OA, complement and OA, and other cells and OA, to enrich the scientific connotation of the "immune-joint" axis.

2.
ACS Biomater Sci Eng ; 9(2): 809-820, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36622161

RESUMO

Recently, starvation-inducing nutrient deprivation has been regarded as a promising strategy for tumor suppression. As a first-line lipid-lowering drug, atorvastatin (ATV) significantly reduces caloric intake, suggesting its potential in starvation therapy for suppressing tumors. Accordingly, we developed a novel starvation therapy agent (HA-Se-ATV) in this study to suppress tumor growth by using hyaluronic acid (HA)-conjugated chitosan polymer-coated nano-selenium (Se) for loading ATV. HA-Se-ATV targets cancer cells, following which it effectively accumulates in the tumor tissue. The HA-Se-ATV nanoplatform was then activated by inducing a weakly acidic tumor microenvironment and subsequently releasing ATV. ATV and Se synergistically downregulate the levels of cellular adenosine triphosphate while inhibiting the expression of thioredoxin reductase 1. Consequently, the starvation-stress reaction of cancer cells is significantly elevated, leading to cancer cell death. Furthermore, the in vivo results indicate that HA-Se-ATV effectively suppresses tumor growth with a low level of toxicity, demonstrating its great potential for clinical translation.


Assuntos
Neoplasias , Selênio , Humanos , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Selênio/farmacologia , Neoplasias/tratamento farmacológico , Concentração de Íons de Hidrogênio , Microambiente Tumoral
3.
Nano Lett ; 23(1): 140-147, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36450010

RESUMO

The iron-based superconductors are an ideal platform to reveal the enigma of the unconventional superconductivity and potential topological superconductivity. Among them, the monolayer Fe(Se,Te)/SrTiO3(001), which is proposed to be topological nontrivial, shows interface-enhanced high-temperature superconductivity in the two-dimensional limit. However, the experimental studies on the superconducting pairing mechanism of monolayer Fe(Se,Te) films are still limited. Here, by measuring the quasiparticle interference in monolayer Fe(Se,Te)/SrTiO3(001), we report the observation of the anisotropic structure of the large superconducting gap and the sign change of the superconducting gap on different electron pockets. The results are well consistent with the "bonding-antibonding" s±-wave pairing symmetry driven by spin fluctuations in conjunction with spin-orbit coupling. Our work is of basic significance not only for a unified superconducting formalism in the iron-based superconductors, but also for understanding of topological superconductivity in high-temperature superconductors.

4.
Int Immunopharmacol ; 113(Pt A): 109349, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36302323

RESUMO

Osteoarthritis (OA) is a common degenerative disease with few treatments. In traditional Chinese medicine (TCM), Radix Angelicae biseratae (RAB) is commonly used to treat OA. Nodakenin (Nod) is one main coumarin active component in RAB and exhibits anti-inflammatory, anti-oxidative, and anti-apoptotic effects. Reactive oxygen species (ROS) produced by mitochondria play a vital role in the pathogenesis of OA. We hypothesized that Nod might ameliorate cartilage degradation and inflammatory responses by regulating the mitochondrial Drp1/ROS/NLRP3 axis. With this, the effects of Nod on a mouse model of knee OA and activated primary chondrocytes were assessed. The results showed that Nod intervention improved bone volume, lowered trabecular separation, and increased trabecular number in the subchondral bone. Nod decreased the Osteoarthritis Research Society International (OARSI) scores and increased collagen II-positive areas in the articular cartilage of the tibial plateau. Compared with OA mice, Nod-treated animals exhibited lower levels of inflammatory factors in the serum and synovitis of the knee joint. In vitro results indicated that Nod suppressed dynamin-related protein 1 (Drp1) phosphorylation and massive ROS production by Drp1-dependent mitochondrial fission in lipopolysaccharide-stimulated chondrocytes. Moreover, Nod inhibited the mRNA levels of inflammatory cytokines (COX 2, IL-1ß, and TNF-α), nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, and matrix metalloproteinase 13 expression in activated chondrocytes. In conclusion, Nod attenuates cartilage degradation and inflammatory responses in mice with OA by regulating the mitochondrial Drp1/ROS/NLRP3 axis, suggesting its potential for OA therapy.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Camundongos , Animais , Osteoartrite do Joelho/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Condrócitos , Cartilagem Articular/patologia , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Modelos Animais de Doenças , Mitocôndrias , Dinaminas/metabolismo
5.
Nanoscale ; 14(32): 11600-11611, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35861683

RESUMO

A self-preservation Pt(IV) nanoplatform, amorphous ferric oxide-coating selenium core-shell nanoparticles (iAIO@NSe-Pt), was developed for H2O2 depletion-mediated tumor anti-angiogenesis, apoptosis, and ferroptosis. Upon entry into the blood, the ferric oxide shell effectively blocked the contact Pt(IV) prodrug with reduced molecules, then avoided the inactivation of the Pt(IV) prodrug and increased its accumulation in the tumor. After entering cancer cells, iAIO@NSe-Pt caused a series of cascade reactions: (1) AIO on the surface of iAIO@NSe-Pt quickly dissolved, released an abundance of Fe(II) because of the weakly acidic tumor microenvironment, and then catalyzed cellular H2O2 into highly toxic ˙OH, resulting in cellular H2O2 deficiency and cell ferroptosis. (2) The platinum(IV) prodrugs were exposed and quickly reduced to highly toxic Pt(II) by depleting GSH. This process inactivated GPX4, promoted ROS accumulation, and further accelerated ferroptosis. In addition, the generated Pt(II) quickly inhibited DNA replication, achieving effective apoptotic cell death. Meanwhile, Pt(II) inactivated SOD1, which blocked the synthesis of cellular H2O2 and accelerated ROS (superoxide anion radical) accumulation. (3) The deficiency of cellular H2O2 significantly inhibited the expression of vascular endothelial growth factor-A (VEGF-A), blocking tumor angiogenesis and then improving the anticancer effect. (4) After such a cascade reaction, the exposed NSe successively disrupted mitochondrial respiration and inhibited cancer angiogenesis, further inducing cancer cell death. Collectively, our functional and mechanical investigation suggested that iAIO@NSe-Pt exhibits excellent tumor targeting, biocompatibility and anti-tumor efficiency in vitro and in vivo, and provides a novel example of a self-preservation Pt(IV) nanoplatform for H2O2 depletion-mediated tumor anti-angiogenesis, apoptosis, and ferroptosis, showing great promise for future clinical use.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Pró-Fármacos , Selênio , Apoptose , Linhagem Celular Tumoral , Compostos Férricos , Humanos , Peróxido de Hidrogênio/uso terapêutico , Neoplasias/tratamento farmacológico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular
6.
J Microbiol Biotechnol ; 31(12): 1684-1691, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34961752

RESUMO

In this study, the physicochemical changes related to fishy smell were determined by storing high hydrostatic pressure (HHP)-treated mackerel (Scomber japonicus) meat in a refrigerator for 20 days. The inhibition of crude urease activity from Vibrio parahaemolyticus using HHP treatment was also investigated. The mackerel meat storage experiment demonstrated that production of trimethylamine (TMA) and volatile basic nitrogen (VBN), the main components of fishy smell, was significantly reduced on the 20th day of storage after the HHP treatment compared to the untreated mackerels. The results demonstrated that the increased ammonia nitrogen rates in the 2000, 3000, and 4000 bar, HHP-treated groups decreased by 23.8%, 23.8%, and 31.0%, respectively, compared to the untreated groups. The enzyme activity of crude urease was significantly reduced in the HHP-treated group compared to that in the untreated group. Measurement of the volatile organic compounds (VOCs) in mackerel meat during storage indicated that the content of ethanol, 2-butanone, 3-methylbutanal, and trans-2-pentenal, which are known to cause off-flavor due to spoilage, were significantly reduced by HHP treatment. Collectively, our results suggested that HHP treatment would be useful for inhibiting the activity of urease, thereby reducing the fishy smells from fish and shellfish.


Assuntos
Armazenamento de Alimentos/métodos , Perciformes , Alimentos Marinhos/análise , Urease/antagonistas & inibidores , Animais , Microbiologia de Alimentos , Pressão Hidrostática , Metilaminas/análise , Perciformes/microbiologia , Alimentos Marinhos/microbiologia , Olfato , Paladar , Vibrio parahaemolyticus/enzimologia , Compostos Orgânicos Voláteis/análise
7.
Front Pharmacol ; 12: 788392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082670

RESUMO

As life expectancy increases, Osteoarthritis (OA) is becoming a more frequently seen chronic joint disease. The main characteristics of OA are loss of articular cartilage, subchondral bone sclerosis, and synovial inflammation. Baicalein (Bai), a traditional Chinese medicine extracted from Scutellaria baicalensis Georgi, has been demonstrated to exert notable anti-inflammatory effects in previous studies, suggesting its potential effect in the treatment of OA. In this study, we first predicted the action targets of Bai, mapped target genes related to OA, identified potential anti-OA targets for Bai, performed gene ontology (GO) enrichment, and KEGG signaling pathway analyses of the action targets, and analyzed the molecular docking of key Bai targets. Additionally, the effect and potential mechanism of Bai against OA were verified in mouse knee OA models induced by destabilized medial meniscus (DMM) surgery. GO and KEGG analyses showed that 19 anti-OA targets were mainly involved in the response to oxidative stress, the response to hypoxia and apoptosis, and the PI3K-Akt and p53 signaling pathways. Molecular docking results indicated that BAX, BCL 2, and Caspase 3 enriched in the apoptotic signaling pathway have high binding affinity with Bai. Validation experiments showed that Bai can significantly attenuate the loss of articular cartilage (OARSI score), suppress synovial inflammation (synovitis score), and ameliorate subchondral bone resorption measured by micro-CT. In addition, Bai notably inhibited the expression of apoptosis-related proteins in articular cartilage (BAX, BCL 2, and Caspase 3). By combining network pharmacology with experimental validation, our study identifies and verifies the importance of the apoptotic signaling pathway in the treatment of OA by Bai. Bai may have promising application and potential therapeutic value in OA treatment.

8.
J Microbiol Biotechnol ; 30(1): 79-84, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31838793

RESUMO

This study investigated the characterization and functionality of Undaria pinnatifida root (UPT) extracts, degraded using a crude enzyme from Shewanella oneidensis PKA1008. To obtain the optimum degrading conditions, the UPT was mixed with alginate degrading enzymes from S. oneidensis PKA 1008 and was incubated at 30°C for 0, 3, 6, 12, 24, and 48 h. The alginate degrading ability of these enzymes was then evaluated by measuring the reducing sugar, viscosity, pH and chromaticity. Enzymatic extract at 24 h revealed the highest alginate degrading ability and the lowest pH value. As the incubation time increased, the lightness (L *) also decreased and was measured at its lowest value, 39.84, at 12 hours. The redness and yellowness increased gradually to 10.27 at 6 h and to 63.95 at 3 h, respectively. Moreover, the alginate oligosaccharides exhibited significant anti-inflammatory activity. These results indicate that a crude enzyme from S. oneidensis PKA 1008 can be used to enhance the polysaccharide degradation of UPT and the alginate oligosaccharides may also enhance the anti-inflammatory effect.


Assuntos
Anti-Inflamatórios/farmacologia , Citocinas/imunologia , Macrófagos/efeitos dos fármacos , Raízes de Plantas/enzimologia , Shewanella/enzimologia , Undaria/enzimologia , Alginatos/metabolismo , Animais , Inflamação/imunologia , Macrófagos/imunologia , Camundongos , Oligossacarídeos/metabolismo , Extratos Vegetais/metabolismo , Células RAW 264.7
9.
Fitoterapia ; 109: 67-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26705842

RESUMO

Acteoside, the main and representative phenylethanoid glycosides of Herba Cistanches, possesses wide bioactivities but low oral bioavailability. It may serve as the prodrug and be converted into the active forms in gastrointestinal tract, which mainly occurred in intestinal tract composed of intestinal bacteria and intestinal enzyme. Intestinal bacteria, a new drug target, take a significant role on exerting pharmacological effects of drugs by oral administration. In this paper, acteoside was incubated with human or rat intestinal bacteria or rat intestinal enzyme for 36 h to seek metabolites responsible for pharmacodynamics. The samples were analyzed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Besides the parent compound, 14 metabolites were detected and identified based on their retention times and fragmentation patterns in their MS spectra including 8 degradation metabolites, 2 isomers in intestinal bacteria and intestinal enzyme samples and 4 parent metabolites only found in intestinal enzymes. The metabolic pathway of acteoside was thus proposed. Identification of these metabolites of acteoside by the intestinal bacteria or intestinal enzyme gave an insight to clarify pharmacological mechanism of traditional Chinese medicines and identify the real active molecules.


Assuntos
Bactérias/metabolismo , Glucosídeos/farmacocinética , Intestinos/enzimologia , Intestinos/microbiologia , Fenóis/farmacocinética , Animais , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/farmacocinética , Humanos , Espectrometria de Massas , Estrutura Molecular , Ratos
10.
Phytochemistry ; 117: 325-331, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26125942

RESUMO

Cassane skeletons are rare in nature, but often possess valuable medicinal properties. A furanoditerpenoid with an unusual A-seco-rearranged cassane skeleton, neocaesalminin A, and five furanoditerpenoids were isolated from seeds of Caesalpinia minax Hance, along with six known cassane derivatives, 7-O-acetyl-bonducellpin C, caesalmin F, caesalmin C, ζ-caesalmin, caesalmin E1 and caesalpinin K. Compound structures were determined by spectroscopy (HR-ESI-MS, UV, IR, 1D NMR, 2D NMR), X-ray crystallography and quantum chemical computation of electronic circular dichroism). Three of the previously known compounds exhibited significant inhibition of nitric oxide production of RAW264.7 macrophages stimulated by lipopolysaccharide (LPS).


Assuntos
Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Caesalpinia/química , Diterpenos/química , Animais , Linhagem Celular/efeitos dos fármacos , Cristalografia por Raios X , Diterpenos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Medicamentos de Ervas Chinesas/química , Furanos/química , Furanos/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Sementes/química
11.
Fitoterapia ; 92: 168-76, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24239746

RESUMO

A bioassay-guided study led to the isolation of seven new cassane furanoditerpenes, designated as spirocaesalmin B (1), caesalpinin M1 (2), caesalpinin M2 (3), caesalmin E1 (4), caesalmin E2 (5), caesalmin E3 (6), caesalpinin F1 (7) and three known compounds neocaesalpin A(8), neocaesalpin L(9), neocaesalpin L1(10) from the seeds of Caesalpinia minax Hance. Compound structures were determined on the basis of extensive spectroscopic analyses, including X-ray crystallographic analysis, HRESI-MS, UV, IR, 1D and 2D NMR (HSQC, HMBC, NOESY) methods. Some absolute configurations were confirmed via the circular dichroism (CD) spectra. Compound 1 is the first example of an A-seco-rearranged cassane furanoditerpene with an unusual skeleton isolated from the genus Caesalpinia. All compound inhibitory effects on influenza virus neuraminidase (NA) in vitro were valued for the first time. Compared with the positive control (Zanamivir), new compounds were found to show moderate inhibitory activity.


Assuntos
Caesalpinia/química , Diterpenos/isolamento & purificação , Medicamentos de Ervas Chinesas/química , Furanos/isolamento & purificação , Orthomyxoviridae/efeitos dos fármacos , Diterpenos/química , Diterpenos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Furanos/química , Furanos/farmacologia , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Estrutura Molecular , Neuraminidase/antagonistas & inibidores , Fitoterapia , Sementes/química , Proteínas Virais/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA