Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 104: 154266, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35752077

RESUMO

BACKGROUND: Multiorgan dysfunction, especially sepsis-related multiorgan damage, remains a major cause of high mortality in the late stages of infection and a great clinical challenge. In recent years, natural drugs have received widespread attention because of their low cost, wide sources, high efficacy, low toxicity, and limited side effects. Lycorine, a natural compound extracted from Amaryllidaceae, exhibits multiple pharmacological activities, including in the regulation of autophagy and the induction of cancer cell apoptosis, and has anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor activities. However, studies on lycorine have mainly focused on its antitumor properties, and research on its use for organ protection, especially in sepsis-related organ injury, is relatively limited. PURPOSE: To review and discuss the effects and mechanisms of lycorine in the treatment of multi-organ dysfunction, especially sepsis. METHODS: Literature searches in electronic databases, such as Web of Science, Science Direct, PubMed, Google Scholar, and Scopus, were performed using 'Lycorine', 'Amaryllidaceae', 'Pharmacology', 'Pharmacokinetics', 'Anti-inflammation', 'Autophagy', 'Apoptosis', 'Anti-microbial and anti-parasitic', 'Antitumor', 'Organ protection', and 'Sepsis' as keywords, the correlated literature was extracted and conducted from the databases mentioned above. RESULTS: By summarizing the progress made in existing research, we found that the general effects of lycorine involve the regulation of autophagy and the induction of cancer cell apoptosis, and anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor effects; through these pathways, the compound can ameliorate organ damage. In addition, lycorine was found to have an important effect on organ damage in sepsis. CONCLUSION: Lycorine is a promising natural organ protective agent. This review will provide a new theoretical basis for the treatment of organ protection, especially in sepsis.


Assuntos
Alcaloides de Amaryllidaceae , Amaryllidaceae , Antimaláricos , Alcaloides de Amaryllidaceae/farmacologia , Antifúngicos/farmacologia , Antimaláricos/farmacologia , Antivirais/farmacologia , Apoptose , Fenantridinas/farmacologia
2.
Oxid Med Cell Longev ; 2022: 2886932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571240

RESUMO

Myocardial dysfunction is well-recognized manifestations of organ dysfunction in sepsis, which is the leading cause of death in critically ill patients. The underlying mechanisms associated with sepsis-induced myocardial injury (SIMI) include cardiac contractility, inflammatory response, oxidative stress, and apoptosis. Kudzu celery decoction (KCD) is composed of a variety of traditional Chinese medicine (TCM) such as kudzu and celery. The previous study found that the main ingredients in kudzu and celery have also been proved to have anti-inflammatory, antioxidative, and other biological activities. In this study, the therapeutic effects of KCD were evaluated in the cecal ligation and puncture (CLP) model of BALB/c mice. The effects of KCD on cardiac function, myocardium damage, inflammation, and fibrosis in CLP-injured mice were analyzed with echocardiography, histological staining, and quantitative real-time PCR. The results showed that KCD treatment improved the anal temperature, sepsis score, blood routine parameters, and blood biochemical parameters in CLP-injured mice. Then, we observed that KCD could remarkably alleviate cardiac dysfunction, myocardial fibrosis, oxidative stress, and inflammation in CLP-injured mice. In this study, we confirmed that KCD has a significant protective effect on SIMI, which may favor KCD a potential cardioprotective drug candidate to alleviate SIMI and further amplify the application of TCM prescription in clinic.


Assuntos
Apium , Traumatismos Cardíacos , Pueraria , Sepse , Animais , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Camundongos , Sepse/complicações , Sepse/tratamento farmacológico
3.
Arch Med Res ; 42(3): 171-81, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21722811

RESUMO

BACKGROUND AND AIMS: Patients with diabetes show enhanced susceptibility to myocardial ischemia/reperfusion (MI/R) injury. Epidemiological studies indicated that consumption of α-linolenic acid (ALA) significantly reduces the risk of cardiac events in post-acute myocardial infarction patients. The present study attempted to investigate the effects of ALA intake on MI/R injury in normal and diabetic rats and its mechanisms. METHODS: The high-fat diet-fed streptozotocin (HFD-STZ) rat model was developed. Age-matched normal and HFD-STZ rats were randomly assigned to receive normal diet or ALA (oral gavage, 500 µg/kg per day). After 4 weeks of feeding, animals were subjected to 30 min of myocardial ischemia and 4 or 6 h of reperfusion. RESULTS: Compared with the normal control, HFD-STZ rats showed more severe myocardial functional impairment and injury. Although ALA intake for 4 weeks did not change myocardial function and injury in normal rats, it significantly improved the instantaneous first derivation of left ventricle pressure, reduced infarct size, plasma creatine kinase and lactate dehydrogenase activities, and apotosis at the end of reperfusion in HFD-STZ diabetic rats. Moreover, ALA intake not only significantly reduced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) concentrations but reduced the increase in superoxide production and malonaldialdehyde formation and simultaneously enhanced the antioxidant capacity in the diabetic hearts. Myocardial PI3K expression and Akt phosphorylation were increased by ALA intake in diabetic but not normal rats. CONCLUSIONS: Chronic ALA intake confers cardioprotection in MI/R by exerting anti-inflammatory and anti-oxidative stress effects in diabetic but not normal rats, which is possibly through PI3K-Akt-dependent mechanism.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Suplementos Nutricionais , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ácido alfa-Linolênico/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Glicemia , Peso Corporal , Creatina Quinase/sangue , Diabetes Mellitus Experimental/sangue , Gorduras na Dieta , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insulina/sangue , L-Lactato Desidrogenase/sangue , Masculino , Malondialdeído/metabolismo , Glicoproteínas de Membrana/metabolismo , Traumatismo por Reperfusão Miocárdica/sangue , Miocárdio/enzimologia , Miocárdio/metabolismo , Miocárdio/patologia , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Necrose/sangue , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Triglicerídeos/sangue , Ácido alfa-Linolênico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA