Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Autism ; 15(1): 14, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570876

RESUMO

BACKGROUND: SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency. METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α. RESULTS: We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice. LIMITATIONS: We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons. CONCLUSIONS: These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.


Assuntos
Transtorno Autístico , Animais , Camundongos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Hipotálamo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo
2.
Bioorg Chem ; 147: 107375, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636437

RESUMO

The dried fruit of Amomum villosum is an important spice and medicinal plant that has received great attention in recent years due to its high content of bioactive components and its potential for food additives and drug development. However, the stems and leaves of A. villosum are usually disposed of as waste. Based on the study of the fruits of A. villosum, we also systematically studied its stems and leaves. Fourteen aromatic compounds (1-14) were isolated and identified from A. villosum, including five new compounds (1-5) and nine known compounds (6-14). Among them, compounds 2-5, 8-10, 12-13 were obtained from the fruits of A. villosum, and compounds 1, 6-7,11, 14 were isolated from the stems and leaves of A. villosum. Based on chemical evidence and spectral data analysis (UV, ECD, Optical rotation data, 1D and 2D-NMR, and HR-ESI-MS), the structures of new compounds were elucidated. Furthermore, all compounds were tested for their effects on the survival rate of BV-2 cells in the presence of hydrogen peroxide. Among them, compound 5 showed antioxidant effects. Through network pharmacology screening and the cell thermal shift assay (CETSA), the Phosphoglycerate Mutase 5 (PGAM5) protein was identified as the antioxidant target of compound 5. Molecular docking results showed that compound 5 maintains binding to PGAM5 by forming hydrogen bond interactions with Lys93 and Agr214. In summary, A. villosum had potential medicinal and food values due to the diverse bioactive components.


Assuntos
Amomum , Antioxidantes , Simulação de Acoplamento Molecular , Amomum/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Sobrevivência Celular/efeitos dos fármacos , Humanos , Animais , Folhas de Planta/química
3.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1076-1088, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658150

RESUMO

Flavin-containing monooxygenase (FMO) is the key enzyme in the biosynthesis pathway of CSOs with sulfur oxidation. In order to explore the molecular regulatory mechanism of FMO in the synthesis of onion CSOs, based on transcriptome database and phylogenetic analysis, one AcFMO gene that may be involved in alliin synthesis was obtained, the AcFMO had a cDNA of 1 374 bp and encoded 457 amino acids, which was evolutionarily closest to the AsFMO of garlic. Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) indicated that AcFMO was the highest in the flowers and the lowest in the leaf sheaths. The results of subcellular localization showed that the AcFMO gene product was widely distributed throughout the cell A yeast expression vector was constructed, and the AcFMO gene was ecotopically overexpressed in yeast to further study the enzyme function in vitro and could catalyze the synthesis of alliin by S-allyl-l-cysteine. In summary, the cloning and functional identification of AcFMO have important reference value for understanding the biosynthesis of CSOs in onions.


Assuntos
Clonagem Molecular , Cisteína/análogos & derivados , Cebolas , Cebolas/genética , Cebolas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cisteína/biossíntese , Cisteína/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Sequência de Aminoácidos , Filogenia , Dissulfetos/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Food Funct ; 15(8): 4627-4641, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38592736

RESUMO

Diet-induced thermogenesis (DIT) is crucial for maintaining body weight homeostasis, and the role of dietary fatty acids in modulating DIT is essential. However, the underlying mechanism of fatty acid regulated diet-induced thermogenesis remains elusive. Utilizing the diet- and genetic ablation-induced obese mice models, we found that the C16 unsaturated fatty acids, trans-palmitoleic acid (TPA) and cis-palmitoleic acid (CPA), significantly increased the energy expenditure by promoting the thermogenesis of brown adipose tissues and the production of beige cells in white adipose. As a result, there is a significant reduction in the occurrence of obesity, associated hepatic steatosis and hyperglycemia. Notably, TPA exhibited more potent effects on promoting DIT and alleviating obesity than CPA did. Using inhibitor and gene deletion mice models, we unveiled that TPA acted as a signaling molecule to play a biological function, which could be sensed by the hypothalamic FFAR1 to activate the sympathetic nervous system in promoting adipose tissue thermogenesis. Together, these results demonstrate the underlying mechanism of free fatty acids associated-DIT and will provide fresh insights into the roles of trans-fatty acids in the development of obesity.


Assuntos
Ácidos Graxos Monoinsaturados , Hipotálamo , Camundongos Endogâmicos C57BL , Obesidade , Receptores Acoplados a Proteínas G , Transdução de Sinais , Termogênese , Animais , Termogênese/efeitos dos fármacos , Camundongos , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ácidos Graxos Monoinsaturados/farmacologia , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Masculino , Transdução de Sinais/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Dieta Hiperlipídica
5.
Endocrine ; 84(3): 1088-1096, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38367146

RESUMO

BACKGROUND: Limited research has been conducted to specifically investigate the identification of risk factors and the development of prediction models for lateral lymph node metastasis (LNM) in pediatric and adolescent differentiated thyroid carcinoma (DTC) populations, despite its significant association with unfavorable prognosis. METHODS: This study entails a retrospective analysis of the clinical characteristics exhibited by pediatric and adolescent patients who have been diagnosed with DTC. The data utilized for this analysis was sourced from the Surveillance, Epidemiology, and End Results (SEER) database, spanning the time frame from 2000 to 2020. Furthermore, the study incorporates patients who were treated at the Departments of Breast and Thyroid Surgery in the Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, as well as The General Hospital of Western Theater Command, during the period from 2010 to 2020. RESULTS: A cohort of 2631 patients from the SEER database, along with an additional 339 patients from our departments who met the specified inclusion criteria, were included in this study. Subsequently, four clinical variables, namely age, tumor size, multifocality, and extrathyroidal invasion, were identified as being significantly associated with lateral LNM in pediatric and adolescent DTC patients. These variables were then utilized to construct a nomogram, which demonstrated effective discrimination with a concordance index (C-index) of 0.731. Furthermore, the performance of this model was validated through both internal and external assessments, yielding C-index values of 0.721 and 0.712, respectively. Afterward, a decision curve analysis was conducted to assess the viability of this nomogram in predicting lymph node metastasis. CONCLUSION: The current investigation has effectively constructed a nomogram model utilizing visualized multipopulationsal data. Our findings demonstrate a significant association between various clinical characteristics and lateral LNM in pediatric and adolescent DTC patients. These outcomes hold substantial significance for healthcare practitioners, as they can employ this model to inform individualized clinical judgments for the pediatric and adolescent cohorts.


Assuntos
Metástase Linfática , Nomogramas , Programa de SEER , Neoplasias da Glândula Tireoide , Humanos , Adolescente , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/cirurgia , Feminino , Masculino , Metástase Linfática/patologia , Criança , Estudos Retrospectivos , Linfonodos/patologia , Prognóstico
6.
J Control Release ; 367: 425-440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295998

RESUMO

Triple-negative breast cancer (TNBC) is characterized by complex heterogeneity, high recurrence and metastasis rates, and short overall survival, owing to the lack of endocrine and targeted receptors, which necessitates chemotherapy as the major treatment regimen. Exosome-like nanovesicles derived from medicinal plants have shown great potential as novel biotherapeutics for cancer therapy by delivering their incorporated nucleic acids, especially microRNAs (miRNAs), to mammalian cells. In this study, we isolated exosome-like nanovesicles derived from B. javanica (BF-Exos) and investigated their influence and underlying molecular mechanisms in TNBC. We found that BF-Exos delivered 10 functional miRNAs to 4T1 cells, significantly retarding the growth and metastasis of 4T1 cells by regulating the PI3K/Akt/mTOR signaling pathway and promoting ROS/caspase-mediated apoptosis. Moreover, BF-Exos were shown to inhibit the secretion of vascular endothelial growth factor, contributing to anti-angiogenesis in the tumor microenvironment. In vivo, BF-Exos inhibited tumor growth, metastasis, and angiogenesis in breast tumor mouse models, while maintaining high biosafety. Overall, BF-Exos are considered promising nanoplatforms for the delivery of medicinal plant-derived nucleic acids, with great potential to be developed into novel biotherapeutics for the treatment of TNBC.


Assuntos
Exossomos , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , MicroRNAs/uso terapêutico , Brucea javanica , Fosfatidilinositol 3-Quinases/metabolismo , Exossomos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Proliferação de Células , Mamíferos/metabolismo , Microambiente Tumoral
7.
J Neuroeng Rehabil ; 21(1): 16, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291426

RESUMO

BACKGROUND: Although some studies suggest that robot-assisted technology can significantly improve upper limb function in stroke patients compared to traditional rehabilitation training, it is still necessary to incorporate an auxiliary intervention to alleviate negative emotions, thereby alleviating the post-stroke fatigue and encouraging patients to actively respond to rehabilitation. However, the effect of the auxiliary intervention is unknown. OBJECTIVE: To evaluate the effect of reminiscent music therapy combined with robot-assisted rehabilitation in elderly patients with upper limb dysfunction. METHODS: From November 2022 to March 2023, elderly patients with upper limb dysfunction after stroke were assigned to one of three groups, with group A receiving usual rehabilitation treatment and care plus robot-assisted rehabilitation and reminiscent music therapy, group B receiving usual rehabilitation treatment and care plus robot-assisted rehabilitation, and group C receiving only usual rehabilitation treatment and care. Thirty patients completed this study, with 10 participants in each group. Activities of daily living, self-esteem, rehabilitation self-efficacy, positive emotion and upper limb function were measured before and after the intervention. One-way analysis of variance, paired-sample t-test, Kruskal-Wallis H test, Wilcoxon signed rank sum test and Chi-square test were used to analyze the data. RESULTS: According to the intragroup comparisons, in the three groups, all outcome measurements were significantly higher than those at baseline (all P < 0.05). After the intervention, the differences in the self-management effectiveness, rehabilitation self-efficacy, and positive emotion score were statistically significant among the three groups (all P < 0.05). In accordance with the results of Bonferroni analysis, the self-management effectiveness score of group A was significantly higher than that of Group B and Group C (all P < 0.05). The rehabilitation self-efficacy score of group A was significantly higher than that of Group B and Group C (P < 0.05). The positive emotion score of group A was significantly higher than that of Group B and Group C (P < 0.05). CONCLUSION: Reminiscent music therapy combined with robot-assisted rehabilitation is a promising approach to improve rehabilitation self-efficacy and positive emotion, which is evidence that reminiscent music therapy may be an effective auxiliary intervention to improve rehabilitation outcomes.


Assuntos
Musicoterapia , Música , Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Idoso , Reabilitação do Acidente Vascular Cerebral/métodos , Projetos Piloto , Atividades Cotidianas , Robótica/métodos , Recuperação de Função Fisiológica , Extremidade Superior , Resultado do Tratamento
8.
Anal Bioanal Chem ; 416(4): 849-859, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38006441

RESUMO

Despite significant advancements in cancer research, real-time monitoring and effective treatment of cancer through non-invasive techniques remain a challenge. Herein, a novel polydopamine (PDA) nucleic acid nanoprobe has been developed for imaging signal amplification of intracellular mRNA and precise photothermal therapy guidance in cancer cells. The PDA nucleic acid nanoprobe (PDA@DNA) is constructed by assembling an aptamer hairpin (H1) labeled with the Cy5 fluorophore and another nucleic acid recognition hairpin (H2) onto PDA nanoparticles (PDA NPs), which have exceptionally high fluorescence quenching ability and excellent photothermal conversion properties. The nanoprobe could facilitate cellular uptake of DNA molecules and their protection from nuclease degradation. Upon recognition and binding to the intracellular mRNA target, a catalytic hairpin assembly (CHA) reaction occurs. The stem of H1 unfolds upon binding, allowing the exposed H1 to hybridize with H2, forming a flat and sturdy DNA double-stranded structure that detaches from the surface of PDA NPs. At the same time, the target mRNA is displaced and engages in a new cyclic reaction, resulting in the recovery and significant amplification of Cy5 fluorescence. Using thymidine kinase1 (TK1) mRNA as a model mRNA, this nanoprobe enables the analysis of TK1 mRNA with a detection limit of 9.34 pM, which is at least two orders of magnitude lower than that of a non-amplifying imaging nucleic acid probe. Moreover, with its outstanding performance for in vitro detection, this nanoprobe excels in precisely imaging tumor cells. Through live-cell TK1 mRNA imaging, it can accurately distinguish between tumor cells and normal cells. Furthermore, when exposed to 808-nm laser irradiation, the nanoprobe fully harnesses exceptional photothermal conversion properties of PDA NPs. This results in a localized temperature increase within tumor cells, which ultimately triggers apoptosis in these tumor cells. The integration of PDA@DNA presents innovative prospects for tumor diagnosis and image-guided tumor therapy, offering the potential for high-precision diagnosis and treatment of tumors.


Assuntos
Carbocianinas , Indóis , Nanopartículas , Neoplasias , Polímeros , Humanos , Fototerapia , Terapia Fototérmica , RNA Mensageiro/química , Nanopartículas/química , DNA/química , Neoplasias/patologia
9.
Phytochem Anal ; 35(1): 146-162, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37731278

RESUMO

INTRODUCTION: Dajianzhong decoction (DJZD), a classic famous prescription, has a long history of medicinal application. Modern studies have demonstrated its clinical utility in the treatment of postoperative ileus (POI). But none of the current quality evaluation methods for this compound is associated with efficacy. OBJECTIVES: This study aimed to identify the quality markers (Q-Markers) connected to the treatment of POI in DJZD. METHODOLOGY: Ultra-performance liquid chromatography quadrupole Exactive Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap-MS) was used to identify the main constituents in DJZD. Based on the qualitative results obtained by fingerprinting, chemical pattern recognition (CPR) was used to analyse the key components affecting the quality and finally to establish the network of the active ingredients in DJZD with POI. RESULTS: A total of 64 chemical components were detected. After fingerprint analysis, 13 common peaks were identified. The fingerprint similarity of 15 batches of samples ranged from 0.860 to 1.000. CPR analysis was able to categorically classify 15 batches of DJZD into two groups. And gingerenone A, methyl-6-gingerdiol, 6-gingerol, and hydroxy-ß-sanshool contributed to their grouping. Twelve common components interact with the therapeutic targets for treating POI. In addition, the mechanism of this prescription for treating POI may be related to the jurisdiction of the neurological system, the immunological system, and the inflammatory response. CONCLUSIONS: This integrated approach can accurately assess and forecast the quality of DJZD, presume the Q-Markers of DJZD for POI, and lay the foundation for studying the theoretical underpinnings and exploring the mechanism of DJZD in the treatment of POI.


Assuntos
Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/química , Cromatografia Líquida de Alta Pressão/métodos , Quimiometria , Farmacologia em Rede , Cromatografia Gasosa-Espectrometria de Massas
10.
Plant Physiol Biochem ; 206: 108263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100887

RESUMO

The supply level of exogenous nitrogen has a very important influence on the growth and development of cucumber. Insufficient or excessive nitrogen application will lead to metabolic disorders in the body and affect the formation of yield. Therefore, it is of great scientific and practical significance to explore the corresponding mitigation measures. Melatonin (MT) is a multi-regulatory molecule with pleiotropic effects on plant growth and development. A large number of studies have shown that the appropriate amount of melatonin supplementation is beneficial to plant growth and development by promoting root development, delaying leaf senescence, and improving fruit yield. However, the study of MT function combined with a detailed physiological analysis of nitrogen (N) absorption and metabolism in cucumber plants needs further strengthening. We performed hydroponic tests at different nitrogen levels to determine the metabolic processes associated with the enhanced tolerance to nitrogen in melatonin-treated cucumber (Cucucumis sativus L.) seedlings. Cucumber seedlings were sprayed with 100 µM melatonin or water and treated with different nitrogen in the growth chamber for 7 days. Nitrogen deficiency significantly inhibited seedling growth, and this growth inhibition was partially alleviated by melatonin. The expression analysis of related carbon and nitrogen genes showed that the genes whose expression was significantly altered by melatonin were mainly related to carbon (C) and nitrogen (N) metabolism. By enzyme activity and reactive oxygen content data analysis, melatonin-treated cucumber seedlings showed relatively stable carbon and nitrogen levels compared to untreated ones. In conclusion, MT can repair the impaired growth and development situation by regulating the nitrogen assimilation capacity and the balance between oxidation and oxidative metabolism and carbon metabolism in the cucumber under different nitrogen levels.


Assuntos
Cucumis sativus , Melatonina , Plântula/metabolismo , Cucumis sativus/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo
11.
Plant Cell Physiol ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971406

RESUMO

Plant oils represent a large group of neutral lipids with important applications in food, feed and oleochemical industries. Most plants accumulate oils in the form of triacylglycerol within seeds and their surrounding tissues, which is comprised of three fatty acids attached to a glycerol backbone. Different plant species accumulate unique fatty acids in their oils, serving a range of applications in pharmaceuticals and oleochemicals. To enable the production of these distinctive oils, select plant species have evolved specialized oil metabolism pathways, involving differential gene co-expression networks and structurally divergent enzymes/proteins. Here, we summarize some of the recent advances in our understanding of oil biosynthesis in plants. We compare expression patterns of oil metabolism genes from representative species, including Arabidopsis thaliana, Ricinus communis (castor bean), Linum usitatissimum L. (flax), and Elaeis guineensis (oil palm) to showcase the co-expression networks of relevant genes for acyl metabolism. We also review several divergent enzymes/proteins associated with key catalytic steps of unique oil accumulation, including fatty acid desaturases, diacylglycerol acyltransferases, and oleosins, highlighting their structural features and preference towards unique lipid substrates. Lastly, we briefly discuss protein interactomes and substrate channeling for oil biosynthesis and the complex regulation of these processes.

12.
Plant Physiol Biochem ; 205: 108157, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939544

RESUMO

Tea is one of the most popular beverages, it has many health benefits and flavor properties due to the presence of numerous secondary metabolites. Camellia assamica is also a main source of tea, which is mainly planted in the regions of southwest China. In this study, a non-targeted and targeted metabolomics analysis and sensory evaluation on tea leaves with and without mistletoe (Viscum articulatum) was carried out using liquid chromatography-mass spectrometry. RNA-seq-based transcriptomic analysis was conducted in parallel on the same samples, subsequently gene expression and metabolic differentiation were also investigated. Tea leaves with mistletoe presented much lower contents of (-)-catechin, (-)-epicatechin, (-)-gallocatechin gallate and (-)-epicatechin gallate, but significantly higher levels of free amino acids including Arg, Asp, GABA and Gln than that without mistletoe. Transcriptomic analysis also confirmed the main differentially expressed genes (DEGs) containing phenylpropanoid and flavonoid biosynthesis were down-regulated, but genes of amino acid biosynthesis were up-regulated. qRT-PCR analysis further revealed that the relative expression of CsCHS, CsC4H, CsANS, CsLAR, and CsF3H was hindered, while CsglyA and CsilvE expression was increased.


Assuntos
Camellia sinensis , Camellia , Catequina , Camellia/genética , Camellia/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolômica , Catequina/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Chá , Flavonoides/metabolismo
13.
BMC Microbiol ; 23(1): 302, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872475

RESUMO

BACKGROUND: Small peptides play a crucial role in plant growth and adaptation to the environment. Exogenous small peptides are often applied together with surfactants as foliar fertilizers, but the impact of small peptides and surfactants on the tea phyllosphere microbiome remains unknown. RESULTS: In this study, we investigated the effects of small peptides and different surfactants on the tea phyllosphere microbiome using 16S and ITS sequencing. Our results showed that the use of small peptides reduced the bacterial diversity of the tea phyllosphere microbiome and increased the fungal diversity, while the use of surfactants influenced the diversity of bacteria and fungi. Furthermore, the addition of rhamnolipid to small peptides significantly improved the tea phyllosphere microbiome community structure, making beneficial microorganisms such as Pseudomonas, Chryseobacterium, Meyerozyma, and Vishniacozyma dominant populations. CONCLUSION: Our study suggests that the combined use of small peptides and surfactants can significantly modify the tea phyllosphere microbiome community structure, particularly for beneficial microorganisms closely related to tea plant health. Thus, this preliminary study offers initial insights that could guide the application of small peptides and surfactants in agricultural production, particularly with respect to their potential for modulating the phyllosphere microbiome community in tea plant management.


Assuntos
Camellia sinensis , Microbiota , Folhas de Planta/microbiologia , Bactérias/genética , Tensoativos/farmacologia , Chá
14.
Front Pharmacol ; 14: 1268641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881185

RESUMO

Background: Acute gouty arthritis (AGA) significantly impairs patients' quality of life. Currently, existing therapeutic agents exhibit definite efficacy but also lead to serious adverse reactions. Therefore, it is essential to develop highly efficient therapeutic agents with minimal adverse reactions, especially within traditional Chinese medicine (TCM). Additionally, food polyphenols have shown potential in treating various inflammatory diseases. The Qingre-Huazhuo-Jiangsuan-Recipe (QHJR), a modification of Si-Miao-San (SMS), has emerged as a TCM remedy for AGA with no reported side effects. Recent research has also highlighted a strong genetic link to gout. Methods: The TCM System Pharmacology (TCMSP) database was used to collect the main chemical components of QHJR and AGA-related targets for predicting the metabolites in QHJR. HPLC-Q-Orbitrap-MS was employed to identify the ingredients of QHJR. The collected metabolites were then used to construct a Drugs-Targets Network in Cytoscape software, ranked based on their "Degree" of significance. Differentially expressed genes (DEGs) were screened in the Gene Expression Omnibus (GEO) database using GEO2R online analysis. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. The DEGs were utilized to construct a Protein-Protein Interaction (PPI) Network via the STRING database. In vivo experimental validation was conducted using colchicine, QHJR, rapamycin (RAPA), and 3-methyladenine (3-MA) as controls to observe QHJR's efficacy in AGA. Synovial tissues from rats were collected, and qRT-PCR and Western blot assays were employed to investigate Ampk-related factors (Ampk, mTOR, ULK1), autophagy-related factors (Atg5, Atg7, LC3, p62), and inflammatory-related factors (NLRP3). ELISA assays were performed to measure inflammatory-related factor levels (IL-6, IL-1ß, TNF-α), and H&E staining was used to examine tissue histology. Results: Network analysis screened out a total of 94 metabolites in QHJR for AGA. HPLC-Q-Orbitrap-MS analysis identified 27 of these metabolites. Notably, five metabolites (Neochlorogenic acid, Caffeic acid, Berberine, Isoliquiritigenin, Formononetin) were not associated with any individual herbal component of QHJR in TCMSP database, while six metabolites (quercetin, luteolin, formononetin, naringenin, taxifolin, diosgenin) overlapped with the predicted results from the previous network analysis. Further network analysis highlighted key components, such as Caffeic acid, cis-resveratrol, Apigenin, and Isoliquiritigenin. Other studies have found that their treatment of AGA is achieved through reducing inflammation, consistent with this study, laying the foundation for the mechanism study of QHJR against AGA. PPI analysis identified TNF, IL-6, and IL-1ß as hub genes. GO and KEGG analyses indicated that anti-inflammation was a key mechanism in AGA treatment. All methods demonstrated that inflammatory expression increased in the Model group but was reversed by QHJR. Additionally, autophagy-related expression increased following QHJR treatment. The study suggested that AMPKα and p-AMPKα1 proteins were insensitive to 3 MA and RAPA, implying that AMPK may not activate autophagy directly but through ULK1 and mTOR. Conclusion: In conclusion, this study confirms the effectiveness of QHJR, a modified formulation of SMS (a classic traditional Chinese medicine prescription for treating gout), against AGA. QHJR, as a TCM formula, offers advantages such as minimal safety concerns and potential long-term use. The study suggests that the mechanism by which QHJR treats AGA may involve the activation of the AMPK/mTOR/ULK1 pathway, thereby regulating autophagy levels, reducing inflammation, and alleviating AGA. These findings provide new therapeutic approaches and ideas for the clinical treatment of AGA.

15.
Phytother Res ; 37(10): 4755-4770, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37846157

RESUMO

Chronic social isolation (SI) stress, which became more prevalent during the COVID-19 pandemic, contributes to abnormal behavior, including mood changes and cognitive impairment. Known as a functional nutrient, betaine has potent antioxidant and anti-inflammatory properties in vivo. However, whether betaine can alleviate the abnormal behavior induced by chronic SI in mice remains unknown. In this study, we investigated the efficacy of betaine in the treatment of behavioral changes and its underlying mechanism. Three-week-old male mice were randomly housed for 8 weeks in either group housing (GH) or SI. The animals were divided into normal saline-treated GH, normal saline-treated SI, and betaine-treated SI groups in the sixth week. The cognitive and depression-like behavior was determined in the eighth week. We found that long-term betaine administration improved cognitive behavior in SI mice but failed to prevent depression-like behavior. Moreover, long-term betaine administration inhibited hippocampal microglia over-activation and polarized microglia toward the M2 phenotype, which effectively inhibited the expression of inflammatory factors in SI mice. Finally, the protective effect of betaine treatment in SI mice might not be due to altered activity of the hypothalamic-pituitary-adrenal axis. Collectively, our findings reveal that betaine can improve SI-induced cognitive impairment, thus providing an alternative natural source for the prevention of memory loss caused by SI or loneliness.


Assuntos
Betaína , Disfunção Cognitiva , Camundongos , Masculino , Animais , Humanos , Betaína/efeitos adversos , Betaína/metabolismo , Microglia , Sistema Hipotálamo-Hipofisário , Pandemias , Solução Salina/efeitos adversos , Solução Salina/metabolismo , Sistema Hipófise-Suprarrenal , Hipocampo , Isolamento Social/psicologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente
16.
BMC Microbiol ; 23(1): 250, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679671

RESUMO

BACKGROUND: Rapeseed cake is an important agricultural waste. After enzymatic fermentation, rapeseed cake not only has specific microbial diversity but also contains a lot of fatty acids, organic acids, amino acids and their derivatives, which has potential value as a high-quality organic fertilizer. However, the effects of fermented rapeseed cake on tea rhizosphere microorganisms and soil metabolites have not been reported. In this study, we aimed to elucidate the effect of enzymatic rapeseed cake fertilizer on the soil of tea tree, and to reveal the correlation between rhizosphere soil microorganisms and nutrients/metabolites. RESULTS: The results showed that: (1) The application of enzymatic rapeseed cake increased the contents of soil organic matter (OM), total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), and available phosphorus (AP); increased the activities of soil urease (S-UE), soil catalase (S-CAT), soil acid phosphatase (S-ACP) and soil sucrase (S-SC); (2) The application of enzymatic rapeseed cake increased the relative abundance of beneficial rhizosphere microorganisms such as Chaetomium, Inocybe, Pseudoxanthomonas, Pseudomonas, Sphingomonas, and Stenotrophomonas; (3) The application of enzymatic rapeseed cake increased the contents of sugar, organic acid, and fatty acid in soil, and the key metabolic pathways were concentrated in sugar and fatty acid metabolisms; (4) The application of enzymatic rapeseed cake promoted the metabolism of sugar, organic acid, and fatty acid in soil by key rhizosphere microorganisms; enzymes and microorganisms jointly regulated the metabolic pathways of sugar and fatty acids in soil. CONCLUSIONS: Enzymatic rapeseed cake fertilizer improved the nutrient status and microbial structure of tea rhizosphere soil, which was beneficial for enhancing soil productivity in tea plantations. These findings provide new insights into the use of enzymatic rapeseed cake as an efficient organic fertilizer and expand its potential for application in tea plantations.


Assuntos
Brassica napus , Brassica rapa , Fermentação , Solo , Fertilizantes , Rizosfera , Ácidos Graxos , Açúcares , Chá
17.
Fitoterapia ; 171: 105685, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37743030

RESUMO

Sophora flavescens belongs to Sophora genus of Leguminosae. Its roots are used as a traditional Chinese medicine. In our study on Sophora flavescens roots, 3 new and 19 known alkaloids have been found, including 8 aloperine-type and 14 matrine-type alkaloids. The planar configurations of these compounds were determined by the spectral data, and the absolute configurations of new compounds 1, 2 and 4 were determined by pyridine solvent effect, ECD and snatzke methods, respectively. All compounds were tested for their inhibitory activity on MCF-7 cell growth, and compound 12 exhibited certain inhibitory effects on the growth of MCF-7 cells after 24 h of treatment at a concentration of 20 µM, with inhibition rates of 31.28%. Through target screening and molecular docking, human Rho GTPase activating protein 5 variant and human arachidonate 12-lipoxygenase (12S-type) might be important targets for compound 12 to exert anti-tumor activity.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Sophora , Humanos , Sophora flavescens , Simulação de Acoplamento Molecular , Estrutura Molecular , Alcaloides/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Raízes de Plantas , Quinolizinas/farmacologia
18.
Int J Biol Macromol ; 249: 126091, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37543269

RESUMO

In this study, the formation of clove essential oil loaded chitosan nanocapsules (CEO/CS-NCs) was achieved by the ionotropic gelation technology. The spherical shape and core-shell structure of CEO/CS-NCs were characterized by SEM, TEM, and FT-IR. CEO/CS-NCs have a reasonable encapsulation efficiency rate of 39 % and an average size of 253.63 nm. The simulated release of CEO/CS-NCs in a citric acid buffer solution shows that the nano-encapsulation technology could control the sustained release of clove essential oil (CEO). The shelf life of untreated blueberries at room temperature is only about 3 days, while CEO/CS-NCs combined with low-temperature storage can extend the shelf life to about 12 days. The quality characteristic of blueberries, including fruit firmness and moisture content, were effectively maintained, and the rotting rate of blueberries was significantly reduced with CEO/CS-NCs. As a natural preservative, CEO/CS-NCs have a good antioxidant activity close to the commercial antioxidant butylated hydroxytoluene (BHT) and a high antibacterial activity against pathogenic bacteria (PB) isolated from naturally occurring blueberries. Therefore, this study not only gives a theoretical basis for the development of CEO as a commercial preservative but also provides a practical solution to solve the protection challenge of preserving blueberries.


Assuntos
Mirtilos Azuis (Planta) , Quitosana , Nanocápsulas , Nanopartículas , Óleos Voláteis , Syzygium , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Quitosana/química , Syzygium/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química , Óleo de Cravo/farmacologia , Óleo de Cravo/química , Antioxidantes/farmacologia , Antioxidantes/química
19.
Nat Prod Res ; : 1-6, 2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424239

RESUMO

Sphagnum palustre L. is a Chinese herbal medicine with a long history, however, few studies have been performed on its chemical composition and active effects. In this study, we investigated the composition and antibacterial and antioxidant capacities of extracts obtained from Sphagnum palustre L. phytosomes extracted with conventional solvents (water, methanol, and ethanol) and two different hydrogen bond donors (citric acid and 1,2-propanediol) modified with choline chloride-type deep eutectic solvents (DESs). The results show that Sphagnum palustre extracts contained 253 compounds, including citric acid, ethyl maltol, and thymol. The highest total phenolic content (TPC) was obtained with a DES extraction method combining 1,2-propanediol and choline chloride (39.02 ± 7.08 mg gallic acid equivalent/g dried weight (DW). This shows the composition of Sphagnum palustre as a natural product and the application of DESs in the extraction of active ingredients, demonstrating the potential of peat moss extracts in cosmetics and health products.

20.
ACS Omega ; 8(26): 23889-23900, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426248

RESUMO

As a traditional medicine with extensive history, Ornithogalum caudatum has high nutritional and medicinal value. However, its quality evaluation criteria are insufficient because it is not included in the pharmacopeia. Simultaneously, it is a perennial plant, and the medicinal ingredients change with the growth years. Currently, studies on the synthesis and accumulation of metabolites and elements in O. caudatum during different growth years are unavailable. To address this issue, in this study, the 8 main active substances, metabolism profiles, and 12 trace elements of O. caudatum from different growth years (1, 3, and 5 years old) were analyzed. The main substances of O. caudatum changed significantly in different years of growth. Saponin and sterol contents increased with age; however, the polysaccharide content decreased. For metabolism profiling, ultrahigh-performance liquid chromatography tandem mass spectrometry was performed. Among the three groups, 156 differential metabolites with variable importance in projection values >1.0 and p < 0.05 were identified. Among the differential metabolites, 16 increased with increasing years of growth and have the potential to become age-identified markers. A trace element study showed that the contents of K, Ca, and Mg were higher, and the ratio of Zn/Cu was less than 0.1%. Heavy metal ions in O. caudatum did not increase with age. The results of this study provide a basis to evaluate the edible values of O. caudatum and facilitate further exploitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA