Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EClinicalMedicine ; 68: 102419, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38292041

RESUMO

Background: With increasingly prevalent coexistence of chronic hepatitis B (CHB) and hepatic steatosis (HS), simple, non-invasive diagnostic methods to accurately assess the severity of hepatic inflammation are needed. We aimed to build a machine learning (ML) based model to detect hepatic inflammation in patients with CHB and concurrent HS. Methods: We conducted a multicenter, retrospective cohort study in China. Treatment-naive CHB patients with biopsy-proven HS between April 2004 and September 2022 were included. The optimal features for model development were selected by SHapley Additive explanations, and an ML algorithm with the best accuracy to diagnose moderate to severe hepatic inflammation (Scheuer's system ≥ G3) was determined and assessed by decision curve analysis (DCA) and calibration curve. This study is registered with ClinicalTrials.gov (NCT05766449). Findings: From a pool of 1,787 treatment-naive patients with CHB and HS across eleven hospitals, 689 patients from nine of these hospitals were chosen for the development of the diagnostic model. The remaining two hospitals contributed to two independent external validation cohorts, comprising 509 patients in validation cohort 1 and 589 in validation cohort 2. Eleven features regarding inflammation, hepatic and metabolic functions were identified. The gradient boosting classifier (GBC) model showed the best performance in predicting moderate to severe hepatic inflammation, with an area under the receiver operating characteristic curve (AUROC) of 0.86 (95% CI 0.83-0.88) in the training cohort, and 0.89 (95% CI 0.86-0.92), 0.76 (95% CI 0.73-0.80) in the first and second external validation cohorts, respectively. A publicly accessible web tool was generated for the model. Interpretation: Using simple parameters, the GBC model predicted hepatic inflammation in CHB patients with concurrent HS. It holds promise for guiding clinical management and improving patient outcomes. Funding: This research was supported by the National Natural Science Foundation of China (No. 82170609, 81970545), Natural Science Foundation of Shandong Province (Major Project) (No. ZR2020KH006), Natural Science Foundation of Jiangsu Province (No.BK20231118), Tianjin Key Medical Discipline (Specialty), Construction Project, TJYXZDXK-059B, Tianjin Health Science and Technology Project key discipline special, TJWJ2022XK034, and Research project of Chinese traditional medicine and Chinese traditional medicine combined with Western medicine of Tianjin municipal health and Family Planning Commission (2021022).

2.
Front Psychiatry ; 14: 928940, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998624

RESUMO

Background: Sleep disturbance is one of the most prominent complaints of patients with alcohol use disorder (AUD), with more than 70% of patients with AUD reporting an inability to resolve sleep problems during abstinence. Mindfulness-based stress reduction (MBSR) has been shown to improve sleep quality and as an alternative therapy to hypnotics for sleep disorders. Objective: The aim of the present study was to evaluate the effect of short-term MBSR on sleep quality in male patients with AUD after withdrawal. Methods: A total of 91 male patients with AUD after 2 weeks of routine withdrawal therapy were randomly divided into two groups using a coin toss: the treatment group (n = 50) and the control group (n = 41). The control group was received supportive therapy, and the intervention group added with MBSR for 2 weeks on the basis of supportive therapy. Objective sleep quality was measured at baseline and 2 weeks after treatment using the cardiopulmonary coupling (CPC). Indicators related to sleep quality include total sleep time, stable sleep time, unstable sleep time, rapid eye movement (REM) sleep time, wake-up time, stable sleep latency, sleep efficiency, and apnea index. These indicators were compared by an analysis of covariance (ANCOVA) between the two groups, controlling for individual differences in the respective measures at baseline. Results: The results showed that there were no significant differences in the age [t (89) = -0.541, P = 0.590), BMI [t (89) = -0.925, P = 0.357], educational status [t (89) = 1.802, P = 0.076], years of drinking [t (89) = -0.472, P = 0.638), daily intake [t (89) = 0.892, P = 0.376], types of alcohol [χ2 (1) = 0.071, P = 0.789], scores of CIWA-AR [t (89) = 0.595, P = 0.554], scores of SDS [t (89) = -1.151, P = 0.253), or scores of SAS [t (89) = -1.209, P = 0.230] between the two groups. Moreover, compared with the control group, the total sleep time [F (1.88) = 4.788, P = 0.031) and stable sleep time [F (1.88) = 6.975, P = 0.010] were significantly increased in the treatment group. Furthermore, the average apnea index in the patients who received MBSR was significantly decreased than in the control group [F (1.88) = 5.284, P = 0.024]. Conclusion: These results suggest that short-term MBSR could improve sleep quality and may serve as an alternative treatment to hypnotics for sleep disturbance in patients with AUD after withdrawal.

3.
J Transl Med ; 20(1): 561, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463203

RESUMO

BACKGROUND: Destruction of articular cartilage and bone is the main cause of joint dysfunction in rheumatoid arthritis (RA). Acid-sensing ion channel 1a (ASIC1a) is a key molecule that mediates the destruction of RA articular cartilage. Estrogen has been proven to have a protective effect against articular cartilage damage, however, the underlying mechanisms remain unclear. METHODS: We treated rat articular chondrocytes with an acidic environment, analyzed the expression levels of mitochondrial stress protein HSP10, ClpP, LONP1 by q-PCR and immunofluorescence staining. Transmission electron microscopy was used to analyze the mitochondrial morphological changes. Laser confocal microscopy was used to analyze the Ca2+, mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) level. Moreover, ASIC1a specific inhibitor Psalmotoxin 1 (Pctx-1) and Ethylene Glycol Tetraacetic Acid (EGTA) were used to observe whether acid stimulation damage mitochondrial function through Ca2+ influx mediated by ASIC1a and whether pretreatment with estrogen could counteract these phenomena. Furthermore, the ovariectomized (OVX) adjuvant arthritis (AA) rat model was treated with estrogen to explore the effect of estrogen on disease progression. RESULTS: Our results indicated that HSP10, ClpP, LONP1 protein and mRNA expression and mitochondrial ROS level were elevated in acid-stimulated chondrocytes. Moreover, acid stimulation decreased mitochondrial membrane potential and damaged mitochondrial structure of chondrocytes. Furthermore, ASIC1a specific inhibitor PcTx-1 and EGTA inhibited acid-induced mitochondrial abnormalities. In addition, estrogen could protect acid-stimulated induced mitochondrial stress by regulating the activity of ASIC1a in rat chondrocytes and protects cartilage damage in OVX AA rat. CONCLUSIONS: Extracellular acidification induces mitochondrial stress by activating ASIC1a, leading to the damage of rat articular chondrocytes. Estrogen antagonizes acidosis-induced joint damage by inhibiting ASIC1a activity. Our study provides new insights into the protective effect and mechanism of action of estrogen in RA.


Assuntos
Canais Iônicos Sensíveis a Ácido , Artrite Reumatoide , Condrócitos , Estrogênios , Mitocôndrias , Animais , Ratos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Artrite Experimental , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Ácido Egtázico/metabolismo , Ácido Egtázico/toxicidade , Estrogênios/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia
4.
Drug Discov Ther ; 15(6): 289-299, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34980761

RESUMO

The outbreak and rapid spread of coronavirus disease 2019 (COVID-19) poses a huge threat to human health and social stability. Shufeng Jiedu capsule (SFJDC), a patented herbal drug composed of eight medicinal plants, is used to treat different viral respiratory tract infectious diseases. Based on its antiviral, anti-inflammatory, and immunoregulatory activities in acute lung injury, SFJDC can be effectively used as a treatment for COVID-19 patients according to the diagnosis and treatment plan issued in China and existing clinical data. SFJDC has been recommended in 15 therapeutic regimens for COVID-19 in China. This review summarizes current data on the ingredients, chemical composition, pharmacological properties, clinical efficacy, and potential therapeutic effect of SFJDC on COVID-19, to provide a theoretical basis for its anti-viral mechanism and the clinical treatment of COVID-19.


Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Anti-Inflamatórios , Antivirais/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , SARS-CoV-2
5.
J Chromatogr A ; 1581-1582: 33-42, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30389211

RESUMO

In this study, a time segment scanning-based quasi-multiple reaction monitoring (quasi-MRM) mode was proposed to improve the quantitative performance of UPLC-QTOF-MS/MS. To achieve the quasi-MRM mode, a strategy to select the ion pair (precursor and product ions) of each analyte was adopted as follows. First, a stable and abundant ion by quadrupole was set as precursor ion in MS scan mode. Second, the fragment ions of the precursor ion formed via collision-induced dissociation were measured by time-of-flight (TOF) in MS/MS scan mode; a characteristic, stable and abundant fragment ion (or precursor ion in case of fragment ion unavailable) was designated as the product ion. Third, the detection specificity and sensitivity of the product ion by TOF were strengthened through time segment scanning over a narrowed mass scan range. The proposed quasi-MRM mode achieved simultaneous quantification of fifteen major components in Moutan Cortex, a widely used medicinal herb, as well as its sulfur-fumigated samples. The quasi-MRM mode was methodologically compared with the other two quantitative modes commonly used in the UPLC-PDA-QTOF-MS/MS apparatus, namely UPLC-PDA and extracted ion analysis. The results demonstrated that the quasi-MRM mode performed better in specificity, sensitivity and linearity. The quasi-MRM mode was further validated with regard to precision, accuracy and stability. The research deliverables indicate that the proposed mode improved the quantitative capability of UPLC-QTOF-MS/MS, and therefore could serve as a potential mode for QTOF-MS/MS-based quantification of herbal medicines.


Assuntos
Técnicas de Química Analítica/métodos , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Medicina Herbária , Paeonia/química , Espectrometria de Massas em Tandem , Plantas Medicinais/química
6.
J Pharm Biomed Anal ; 159: 305-310, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30015100

RESUMO

In traditional Chinese medicine practice, crude herbs are often subjected to traditional processing (Paozhi in Chinese) for a special medicinal purpose. Bran-frying is one of processing methods for Paeoniae Radix Alba (PRA). Previous studies found that paeoniflorin and paeoniflorin sulfonate, a principle bioactive compound and its sulfur-fumigation induced characteristic sulfur-containing derivative, could be used together with sulfur dioxide residue as chemical markers for the quality control of sulfur-fumigated PRA crude material. In this paper, the feasibility of these three markers used for the quality control of bran-fried sulfur-fumigated PRA was further investigated. First, homemade samples of sulfur-fumigated PRA with different sulfur-fumigation duration (0.5-6 h) were bran-fried, and stored for 12 months. Second, the contents of sulfur dioxide residue, paeoniflorin and paeoniflorin sulfonate were dynamically quantified respectively. Third, the variation of the marker contents and their correlation during bran-frying and storage was evaluated. A validation was conducted using commercial bran-fried PRA samples. The results showed that bran-frying caused an averaged reduction of 20% in the content of sulfur dioxide residue, and during the first two months of storage the content of sulfur dioxide residue was decreased by up to 27%, then the content was tending towards stability for the subsequent ten months of storage (RSD = 3.92%). Meanwhile, paeoniflorin and paeoniflorin sulfonate were relatively stable, the contents of which were not affected by bran-frying processing and 12 months of storage. The correlations between the contents of sulfur dioxide residue and paeoniflorin/paeoniflorin sulfonate were obviously influenced by storage duration. Since sulfur dioxide residue is a safety marker, while paeoniflorin and paeoniflorin sulfonate can reflect the inner quality and the impact extent of sulfur-fumigation on the quality of bran-fried PRA respectively, these three chemicals might be used together as markers for the quality control, and consequently to ensure the safety and efficacy of bran-fried PRA.


Assuntos
Medicamentos de Ervas Chinesas/normas , Fumigação/métodos , Medicina Tradicional Chinesa/normas , Paeonia/química , Raízes de Plantas/química , Controle de Qualidade , Química Farmacêutica/métodos , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicina Tradicional Chinesa/métodos , Enxofre/farmacologia
7.
J Chromatogr A ; 1530: 232-240, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29162232

RESUMO

Exploring processing chemistry, in particular the chemical transformation mechanisms involved, is a key step to elucidate the scientific basis in traditional processing of herbal medicines. Previously, taking Rehmanniae Radix (RR) as a case study, the holistic chemome (secondary metabolome and glycome) difference between raw and processed RR was revealed by integrating hyphenated chromatographic techniques-based targeted glycomics and untargeted metabolomics. Nevertheless, the complex chemical transformation mechanisms underpinning the holistic chemome variation in RR processing remain to be extensively clarified. As a continuous study, here a novel strategy by combining chemomics-based marker compounds mining and mimetic processing is proposed for further exploring the chemical mechanisms involved in herbal processing. First, the differential marker compounds between raw and processed herbs were rapidly discovered by untargeted chemomics-based mining approach through multivariate statistical analysis of the chemome data obtained by integrated metabolomics and glycomics analysis. Second, the marker compounds were mimetically processed under the simulated physicochemical conditions as in the herb processing, and the final reaction products were chemically characterized by targeted chemomics-based mining approach. Third, the main chemical transformation mechanisms involved were clarified by linking up the original marker compounds and their mimetic processing products. Using this strategy, a set of differential marker compounds including saccharides, glycosides and furfurals in raw and processed RR was rapidly found, and the major chemical mechanisms involved in RR processing were elucidated as stepwise transformations of saccharides (polysaccharides, oligosaccharides and monosaccharides) and glycosides (iridoid glycosides and phenethylalcohol glycosides) into furfurals (glycosylated/non-glycosylated hydroxymethylfurfurals) by deglycosylation and/or dehydration. The research deliverables indicated that the proposed strategy could advance the understanding of RR processing chemistry, and therefore may be considered a promising approach for delving into the scientific basis in traditional processing of herbal medicines.


Assuntos
Carboidratos/química , Medicamentos de Ervas Chinesas/química , Glicômica , Medicina Herbária/métodos , Metabolômica , Rehmannia/química , Bibliotecas de Moléculas Pequenas/química , Cromatografia , Furaldeído/química , Glicosídeos/química , Metaboloma , Plantas Medicinais/química , Metabolismo Secundário , Bibliotecas de Moléculas Pequenas/análise
8.
Neuropeptides ; 54: 47-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26297350

RESUMO

Nesfatin-1, a newly discovered satiety peptide, has recently been reported to be involved in the stress response. Stress-induced expression of nesfatin-1 has been reported and few studies focus on its expression in the hypothalamus, which is the center of the stress response. To test our hypothesis that peripheral and hypothalamic nesfatin-1 overexpression should play an important role in the stress response and the associated hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis, acute stress (AS) was induced using water avoidance stress (WAS), and chronic unpredictable mild stress (CUMS) was also induced using 3 consecutive weeks of 7 different stressors. The behavior of CUMS rats was evaluated by an open field test (OFT), sucrose preference test (SPT), and forced swimming test (FST). The activity of the HPA axis was detected by measurement of the plasma corticosterone concentration and hypothalamic mRNA expression of corticotropin-releasing-hormone (CRH). The plasma concentration and hypothalamic mRNA expression of nesfatin-1 were measured with an enzyme-linked immunosorbent assay (ELISA) and real-time fluorescent quantitative PCR, respectively. The results showed that both AS and CUMS increased the plasma corticosterone concentration and hypothalamic CRH mRNA expression. Depression-like behavior was induced in CUMS rats, as indicated by a decreased movement distance, frequency of rearing and grooming in the OFT, and sucrose preference index and increased immobility in the FST. Moreover, the AS rats showed increased plasma concentration and hypothalamic mRNA expression of nesfatin-1, which were positively correlated with the plasma corticosterone concentration and hypothalamic CRH expression, respectively. These results indicated that acute stress, but not chronic stress, increased the plasma concentration and hypothalamic mRNA expression of NUCB2/nesfatin-1 in rats.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Depressão , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/metabolismo , Animais , Proteínas de Ligação ao Cálcio/sangue , Corticosterona/sangue , Proteínas de Ligação a DNA/sangue , Masculino , Atividade Motora , Proteínas do Tecido Nervoso/sangue , Nucleobindinas , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA