Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 717-727, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621875

RESUMO

Transcriptome sequencing was employed to mine the simple sequence repeat(SSR) locus information of Saposhnikovia divaricata and design specific primers, which aimed to provide a basis for the research on the genetic diversity of S. divaricata germplasm resources. The seed purity, 1 000-seed weight, germination rate, and seed vigor were determined. MISA was used to obtain the SSR locus information from 12 606 unigene longer than 1 kb in the transcriptome database. Forty-three pairs of SSR primers designed in Primer 3 were used to analyze the polymorphism of 28 S. divaricata samples of different sources. The results showed that there were differences in the seed purity, 1 000-seed weight, germination rate, vigor, and seed length and width among S. divaricata samples of different sources. Particularly, the germination rate and seed vigor had significant differences, and HB-ZJK1, NMG-CF4, NMG-BT, NMG-HLE1, and NMG-CF2 had significantly higher 1 000-seed weight, germination rate, and seed vigor than the samples of other sources. Among the 86 233 unigene, 12 606(14.62%) unigene contained 15 958 SSR loci, with one SSR locus every 5 009 bp on average. The SSR loci were mainly single nucleotide and dinucleotide repeats, which were dominated by G/C and TC/AG, respectively. All the primers were screened by using 28 S. divaricata sample from different habitats, and the primers corresponding to the amplification products with clear bands and stable polymorphism were obtained. The clustering results of the biological characteristics and genetic diversity of the 28 S. divaricata samples were basically consistent, and the samples of the same origin(HB-AG1, HB-AG2, HB-ZJK1, and HB-ZJK2) generally gathered together and had close genetic relationship. The SSRs in S. divaricata transcriptome has high frequency, rich types, and high polymorphism, which provides candidate molecular markers for the germplasm identification, genetic map construction, and molecular-assisted breeding.


Assuntos
Apiaceae , Transcriptoma , Polimorfismo Genético , Repetições de Microssatélites/genética , Apiaceae/genética , Etiquetas de Sequências Expressas
2.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4609-4617, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36164866

RESUMO

Saposhnikovia divaricata is a commonly used bulk medicinal plant. To explore the key enzyme genes and their expression in the biosynthesis of chromone and coumarin, the key active components, we carried out transcriptome sequencing(Illumina HiSeq) and bioinformatics analysis for the 1-year-old(S1) and 2-year-old(S2) plants of S. divaricata. A total of 40.8 Gb data was obtained. After the sequence assembly via Trinity, 110 732 transcripts and 86 233 unigenes were obtained, which were aligned and annotated with NR, Swiss-Prot, GO, KEGG, and PFAM. Daucus carota and S. divaricata had the highest sequence homology. KEGG pathway enrichment showed that the differentially expressed genes were mainly enriched in plant hormone signal transduction, phenylpropanoid biosynthesis, and flavonoid biosynthesis pathways. A total of 27 differentially expressed unigenes, including 13 enzyme genes, were identified in the pathways related to the synthesis of active ingredients in S. divaricata. Compared with S1 plant, S2 plant showed up-regulated expression of PAL, BGL, C4H, 4CL, CYP98A, CSE, REF, and CCoAOMT and down-regulated expression of CHS, CAD, and COMT. HCT and POD had both up-regulated and down-regulated unigenes. Among them, PAL, C4H, 4CL, BGL, and CHS can be used as candidate genes for the synthesis of the active ingredients in S. divaricata. The four key enzyme genes were verified by RT-qPCR, which showed the results consistent with transcriptome sequencing. This study enriches the genetic information of S. divaricata and provides support for the identification of candidate genes in the biosynthesis of secondary metabolites.


Assuntos
Apiaceae , Transcriptoma , Apiaceae/genética , Cromonas , Cumarínicos , Flavonoides , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reguladores de Crescimento de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA