Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155362, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522312

RESUMO

BACKGROUND: Stroke is a leading cause of disability and death worldwide. Currently, there is a lack of clinically effective treatments for the brain damage following ischemic stroke. Catalpol is a bioactive compound derived from the traditional Chinese medicine Rehmannia glutinosa and shown to be protective in various neurological diseases. However, the potential roles of catalpol against ischemic stroke are still not completely clear. PURPOSE: This study aimed to further elucidate the protective effects of catalpol against ischemic stroke. METHODS: A rat permanent middle cerebral artery occlusion (pMCAO) and oxygen-glucose deprivation (OGD) model was established to assess the effect of catalpol in vivo and in vitro, respectively. Behavioral tests were used to examine the effects of catalpol on neurological function of ischemic rats. Immunostaining was performed to evaluate the proliferation, migration and differentiation of neural stem cells (NSCs) as well as the angiogenesis in each group. The protein level of related molecules was detected by western-blot. The effects of catalpol on cultured NSCs as well as brain microvascular endothelial cells (BMECs) subjected to OGD in vitro were also examined by similar methods. RESULTS: Catalpol attenuated the neurological deficits and improved neurological function of ischemic rats. It stimulated the proliferation of NSCs in the subventricular zone (SVZ), promoted their migration to the ischemic cortex and differentiation into neurons or glial cells. At the same time, catalpol increased the cerebral vessels density and the number of proliferating cerebrovascular endothelial cells in the infracted cortex of ischemic rats. The level of SDF-1α and CXCR4 in the ischemic cortex was found to be enhanced by catalpol treatment. Catalpol was also shown to promote the proliferation and migration of cultured NSCs as well as the proliferation of BMECs subjected to OGD insult in vitro. Interestingly, the impact of catalpol on cultured cells was inhibited by CXCR4 inhibitor AMD3100. Moreover, the culture medium of BMECs containing catalpol promoted the proliferation of NSCs, which was also suppressed by AMD3100. CONCLUSION: Our data demonstrate that catalpol exerts neuroprotective effects by promoting neurogenesis and angiogenesis via the SDF-1α/CXCR4 pathway, suggesting the therapeutic potential of catalpol in treating cerebral ischemia.


Assuntos
Quimiocina CXCL12 , Glucosídeos Iridoides , AVC Isquêmico , Neurogênese , Receptores CXCR4 , Animais , Masculino , Ratos , Angiogênese , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quimiocina CXCL12/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Glucosídeos Iridoides/farmacologia , AVC Isquêmico/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley , Receptores CXCR4/metabolismo , Rehmannia/química , Transdução de Sinais/efeitos dos fármacos
2.
Sci China Mater ; 66(5): 1861-1869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36685049

RESUMO

Organic electrochemical transistors (OECTs) have been increasingly explored for innovative electronic devices. However, they inherently demand two power suppliers, which is unfavorable for the utilization of portable and wearable systems with strict energy requirements. Herein, by assembling a monocrystalline silicon solar cell into the OECT circuit with light as fuel, we demonstrated the possibility of a self-powered and light-modulated operation of organic photoelectrochemical transistor (OPECT) optoelectronics. Exemplified by poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based depletion-mode and accumulation-mode OECTs, different light-addressable configurations were constructed, and the corresponding characteristics were systematically studied and compared. Different device behaviors with distinct characteristics could be achieved with the appropriate usage of light stimulation. Toward applications, optologics were designed with various parameters depending on the incident irradiance. Light-controlled OPECT unipolar inverters were further demonstrated and optimized with respect to the power source and resistance. This work features new OPECT optoelectronics combined with proper flexible substrates and solar cells for potential applications in portable and wearable devices. Electronic Supplementary Material: Supplementary material is available in the online version of this article at 10.1007/s40843-022-2295-8.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA