Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 196: 580-586, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36774913

RESUMO

In plants, autophagy plays an important role in regulating intracellular degradation and amino acid recycling in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) shows strong resistance to various abiotic stresses; however, current understanding of the regulation network of abiotic stress resistance in foxtail millet remains limited. In this study, we aimed to determine the autophagy-related gene SiATG8a in foxtail millet. We found that SiATG8a was mainly expressed in the stem and was induced by low-phosphorus (LP) stress. Overexpression of SiATG8a in wheat (Triticum aestivum) significantly increased the grain yield and spike number per m2 under LP treatment compared to those in the WT varieties S366 and S4056. There was no significant difference in the grain P content between SiATG8a-overexpressing wheat and WT wheat under normal phosphorus (NP) and LP treatments. However, the phosphorus (P) content in the roots, stems, and leaves of transgenic plants was significantly higher than that in WT plants under NP and LP conditions. Furthermore, the expression of P transporter genes, such as TaPHR1, TaPHR3, TaIPS1, and TaPT9, in SiATG8a-transgenic wheat was higher than that in WT under LP. Collectively, overexpression of SiATG8a increases the P content of roots, stems, and leaves of transgenic wheat under LP conditions by modulating the expression of P-related transporter gene, which may result in increased grain yield; thus, SiATG8a is a candidate gene for generating transgenic wheat with improved tolerance to LP stress in the field.


Assuntos
Setaria (Planta) , Setaria (Planta)/fisiologia , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fósforo/metabolismo , Autofagia , Regulação da Expressão Gênica de Plantas
2.
Front Plant Sci ; 8: 905, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28634481

RESUMO

Transcription factors play vital roles in plant growth and in plant responses to abiotic stresses. The RAV transcription factors contain a B3 DNA binding domain and/or an APETALA2 (AP2) DNA binding domain. Although genome-wide analyses of RAV family genes have been performed in several species, little is known about the family in soybean (Glycine max L.). In this study, a total of 13 RAV genes, named as GmRAVs, were identified in the soybean genome. We predicted and analyzed the amino acid compositions, phylogenetic relationships, and folding states of conserved domain sequences of soybean RAV transcription factors. These soybean RAV transcription factors were phylogenetically clustered into three classes based on their amino acid sequences. Subcellular localization analysis revealed that the soybean RAV proteins were located in the nucleus. The expression patterns of 13 RAV genes were analyzed by quantitative real-time PCR. Under drought stresses, the RAV genes expressed diversely, up- or down-regulated. Following NaCl treatments, all RAV genes were down-regulated excepting GmRAV-03 which was up-regulated. Under abscisic acid (ABA) treatment, the expression of all of the soybean RAV genes increased dramatically. These results suggested that the soybean RAV genes may be involved in diverse signaling pathways and may be responsive to abiotic stresses and exogenous ABA. Further analysis indicated that GmRAV-03 could increase the transgenic lines resistance to high salt and drought and result in the transgenic plants insensitive to exogenous ABA. This present study provides valuable information for understanding the classification and putative functions of the RAV transcription factors in soybean.

3.
Funct Integr Genomics ; 12(1): 207-13, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21847661

RESUMO

Aphids are major agricultural pests which cause significant yield losses of the crop plants each year. (E)-ß-farnesene (EßF) is the alarm pheromone involved in the chemical communication between aphids and particularly in the avoidance of predation. In the present study, two EßF synthase genes were isolated from sweet wormwood and designated as AaßFS1 and AaßFS2, respectively. Overexpression of AaßFS1 or AaßFS2 in tobacco plants resulted in the emission of EßF ranging from 1.55 to 4.65 ng/day/g fresh tissues. Tritrophic interactions involving the peach aphids (Myzus persicae), predatory lacewings (Chrysopa septempunctata) demonstrated that the transgenic tobacco expressing AaßFS1 and AaßFS2 could repel peach aphids, but not as strongly as expected. However, AaßFS1 and AaßFS2 lines exhibited strong and statistically significant attraction to lacewings. Further experiments combining aphids and lacewing larvae in an octagon arrangement showed transgenic tobacco plants could repel aphids and attract lacewing larvae, thus minimizing aphid infestation. Therefore, we demonstrated a potentially valuable strategy of using EßF synthase genes from sweet wormwood for aphid control in tobacco or other economic important crops in an environmentally benign way.


Assuntos
Afídeos/fisiologia , Nicotiana/genética , Proteínas de Plantas/genética , Pirofosfatases/genética , Animais , Artemisia/enzimologia , Engenharia Genética , Larva/fisiologia , Controle Biológico de Vetores , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Comportamento Predatório , Pirofosfatases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sesquiterpenos/metabolismo , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA