Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 241: 117597, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939808

RESUMO

Since the 2007 water crisis occurred in Lake Taihu, substantial measures have been taken to restore the lake. This study evaluates the effectiveness of these restoration activities. We examined the physicochemical parameters and the distribution of microcystin and Microcystis in both the water column and sediment during the bloom period of May 2020 to October 2020. The mean value of extracellular and intracellular microcystin content was 0.12 µg L-1 and 16.26 µg L-1, respectively. The mean value of microcystin in sediment was 172.02 ng g-1 and peaked in August. The concentration in the water and sediment was significantly lower than the historical average concentration. The abundance of toxigenic Microcystis and total Microcystis in the water column ranged from 2.61 × 102 to 2.25 × 109 copies·L-1 and 8.28 × 105 to 2.76 × 109 copies·L-1, respectively. The proportion of toxic Microcystis in the sediment ranging from 31.2% to 19.12%. The highest and lowest region was Meiliang Bay and Grass-algae type zone, respectively. The copy number of the 16S rRNA gene was 1-4 orders of magnitude higher than that of mcyA gene in populations of Microcystis, indicating that non-toxic Microcystis was the dominant form in the majority of the lake. The abundance of toxic Microcystis in the water column was positively correlated with total phosphorus, PO43--P and pH, while the water temperature played distinct role to the distribution of toxic Microcystis in sediment. Our research indicated phosphorus remains a key factor influencing the toxic Microcystis and microcystins in the water column. pH played distinct roles in the distribution of microcystins in sediment and water column. The increasing water temperature is a threat. Explicit management actions and policies, which take into account nutrient concentrations, pH, and increasing temperatures, are necessary to understand and control the distribution of microcystin and Microcystis in Lake Taihu.


Assuntos
Água Potável , Microcystis , Lagos/química , Microcistinas , RNA Ribossômico 16S/genética , Microcystis/genética , Fósforo/análise , China
2.
J Environ Sci (China) ; 126: 1-16, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503739

RESUMO

To understand the long-term performance of bioretention systems under sulfamethoxazole (SMX) stress, an unplanted bioretention system (BRS) and two modified BRSs with coconut-shell activated carbon (CAC) and CAC/zero-valent-iron (Fe0) granules (CAC-BRS and Fe/CAC-BRS) were established. Both CAC-BRS and Fe/CAC-BRS significantly outperformed BRS in removing total nitrogen (TN) (CAC-BRS: 82.48%; Fe/CAC-BRS: 78.08%; BRS: 47.51%), total phosphorous (TP) (CAC-BRS: 79.36%; Fe/CAC-BRS: 98.26%; BRS: 41.99%), and SMX (CAC-BRS: 99.74%, Fe/CAC-BRS: 99.80%; BRS: 23.05%) under the long-term SMX exposure (0.8 mg/L, 205 days). High-throughput sequencing revealed that the microbial community structures of the three BRSs shifted greatly in upper zones after SMX exposure. Key functional genera, dominantly Nitrospira, Rhodoplanes, Desulfomicrobium, Geobacter, were identified by combining the functional prediction by the FAPROTAX database with the dominant genera. The higher abundance of nitrogen functional genes (nirK, nirS and nosZ) in CAC-BRS and Fe/CAC-BRS might explain the more efficient TN removal in these two systems. Furthermore, the relative abundance of antibiotic-resistant genes (ARGs) sulI and sulII increased in all BRSs along with SMX exposure, suggesting the selection of bacteria containing sul genes. Substrates tended to become reservoirs of sul genes. Also, co-occurrence network analysis revealed distinct potential host genera of ARGs between upper and lower zones. Notably, Fe/CAC-BRS succeeded to reduce the effluent sul genes by 1-2 orders of magnitude, followed by CAC-BRS after 205-day exposure. This study demonstrated that substrate modification was crucial to maintain highly efficient nutrients and SMX removals, and ultimately extend the service life of BRSs in treating SMX wastewater.


Assuntos
Microbiota , Fósforo , Nitrogênio , Sulfametoxazol , Bactérias/genética , Antibacterianos
3.
J Environ Sci (China) ; 127: 1-14, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522044

RESUMO

Understanding the history of microcystins (MCs) pollution in large lakes can help inform future lake management. We collected sediment cores from Lake Taihu to: investigate the long-term record of MCs (MC-LR, MC-YR, and MC-RR), explore the main environmental drivers of MCs, and assess their public health and ecological risks. Results showed that MCs content in all cores increased over time. The core from north Taihu had the highest MC concentrations, with an average total MCs (sum of MC-LR, MC-YR, and MC-RR = TMCs) content of (74.31±328.55) ng/g. The core from eastern Taihu showed the lowest average TMCs content of (2.91±3.95) ng/g. PCA showed that sediment MCs at the three sites were positively correlated with sediment chlorophyll-a. MC-LR and MC-YR in northern and western Taihu negatively correlated with both the sediment total organic carbon/sediment total nitrogen ratio (STOC/STN) and water nitrate (NO3--N) concentration, but three MC congeners at eastern Taihu showed positive correlations with water orthophosphate (PO43--P), NO3--N, and STOC/STN. Generalized additive model analysis at each site revealed that NO3--N was the main TMCs driver in northern and western Taihu where phytoplankton dominated, whereas PO43--P was the main TMCs driver in eastern Taihu where macrophytes dominated. At the whole lake scale, total phosphorus (TP) and PO43--P were the most important environmental drivers influencing MCs; TP explained 47.4%, 44.2%, and 47.6% while orthophosphate explained 34.8%, 31.2%, and 34.7% of the deviance on TMCs, MC-LR, and MC-YR, respectively. NO3--N also showed a strong effect on MCs variation, especially on MC-YR. Risk assessment showed that both ecological and public health risk has increased in recent years. We conclude that while control of phosphorus and nitrogen input should be a major focus for future lake management, lake zone-specific management strategies may also be important.


Assuntos
Monitoramento Ambiental , Microcistinas , Microcistinas/análise , Fósforo/análise , Nitrogênio/análise , Medição de Risco , Fosfatos/análise , Água/análise , China
4.
Toxins (Basel) ; 7(8): 3224-44, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26295260

RESUMO

Excessive anthropogenically-caused nutrient loading from both external and internal sources has promoted the growth of cyanobacteria in Lake Taihu from 2005 to 2014, suggesting increased production and release of cyanotoxins. In order to explain the spatial distribution and temporal variation of microcystins (MCs), the intracellular concentrations of MCs (MC-LR, -RR and -YR, L, R and Y are abbreviations of leucine, arginine and tyrosine) were monitored monthly from July 2013 to June 2014. Three MC variants are present simultaneously in Lake Taihu; the MC-LR and -RR variants were dominant (accounting for 40% and 39% of the total), followed by MC-YR (21%). However, MC-YR accounted for a higher proportion in colder months, especially in March. The highest concentrations of intracellular MCs were found in July and October when cyanobacteria cell density also reached the maximum. The average concentrations of MC-LR, -RR and -YR in July were 4.69, 4.23 and 2.01 µg/L, respectively. In terms of the entire lake, toxin concentrations in northern parts were significantly higher than the eastern part in summer, when MC concentrations were several times higher than the guideline value by WHO throughout much of Lake Taihu. Results from correlation and redundancy analysis (RDA) showed that total MCs, including all variants, were strongly and positively correlated with cyanobacteria cell density, water temperature, total phosphorus (TP) and pH, whereas each variant had different correlation coefficients with each of the considered environmental variables. MC-RR showed a stronger relationship with temperature, in contrast to MC-YR and -LR. Dissolved inorganic carbon (DIC) showed a negative relationship with each variant, suggesting that rising DIC concentrations may inhibit cyanobacterial growth and thereby reduce MC production in the future.


Assuntos
Microcistinas/análise , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Lagos , Fósforo/análise , Fitoplâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA