RESUMO
A novel, unconventional, low cost, eco-friendly and effective shielding materials have been made utilizing the hot dip galvanizing slag using the heat waste from itself, thereby saving the natural resources and preventing the environmental pollution. SEM-EDS of shielding materials indicates that the other elements are distributed in Zn element. The mass attenuation properties of shielding materials were measured using a narrow beam geometrical setup at 0.662MeV, 1.17MeV and 1.33MeV. The half value thickness layer, effective atomic number, and electron density were used to analyze the shielding performance of the materials. The EBFs and EABFs for the prepared shielding materials were also studied with incident photon energy for penetration depths upto 40mfp. The shielding effectiveness has been compared with lead, iron, zinc, some standard shielding concretes, different glasses and some alloys. The shielding effectiveness of the prepared samples is almost found comparable to iron, zinc, selected alloys and glasses while better than some standard shielding concretes. In addition, it is also found that the bending strength of all shielding materials is more than 110MPa.
RESUMO
The role of inherent Ca(2+) in phosphorus removal from wastewater was evaluated by batch tests. Precipitates were characterized by an X-ray diffractometer (XRD), Fourier transform infrared spectrophotometer (FT-IR) and scanning electron microscope with an energy dispersive spectrometer (EDS) system. Effects of inherent Ca(2+) on phosphorus removal through basic oxygen furnace slag (BOFS) were also analyzed. The results show that upon adjusting the pH to higher than 7.0, inherent Ca(2+) can remove phosphorus from wastewater and form Ca-P precipitates. Residual phosphorus exhibited a linear decreasing trend with increasing the pH from 7.0 to 10.0 and then remained unchanged at higher pH than 10.0. EDS determined that the precipitates contained the elements Ca, P and O. FT-IR spectra demonstrated that the functional groups of precipitates involved PO4(3-), OH(-) and CO3(2-). XRD indicated that the precipitates may consist of CaCO3 and some Ca-P phosphates such as CaHPO4, Ca4H(PO4)3, Ca3(PO4)2, and Ca5(PO4)3(OH). During the removal process of phosphorus by BOFS, due to the presence of inherent Ca(2+) in wastewater, the removal efficiency and rate of phosphorus increased by 15.5% and by a factor of about 3.0, respectively.
Assuntos
Cálcio/química , Fosfatos/química , Fósforo/química , Águas Residuárias/química , Carbonato de Cálcio/química , Oxigênio , Espectroscopia de Infravermelho com Transformada de Fourier , Instalações de Eliminação de Resíduos , Purificação da ÁguaRESUMO
Effects of reaction time, initial phosphorus concentration, basic oxygen furnace slag (BOF-slag) dosage and size, and temperature on the phosphorus removal capacities (PRCs) of BOF-slag have been investigated in detail through batch tests. Weakly bound phosphorus, Fe- and Al-associated phosphorus, and Ca-associated phosphorus from fresh and reacted BOF-slag were analysed using sequential chemical extraction processes. It was determined that the PRCs of BOF-slag increased with the increase of initial phosphorus concentration and temperature while it decreased with the increase of BOF-slag dosage and size. The phosphorus removed by BOF-slag was primarily assigned to weakly bound phosphorus and Ca-associated phosphorus. Weakly bound phosphorus showed a significant decrease with the increase in all experimental parameter values. However, Ca-associated phosphorus exhibited a prominent increase with increasing reaction time, initial phosphorus concentration, and temperature. These demonstrate that experimental parameters can simultaneously affect the PRCs of BOF-slag and the ways of phosphorus removal by BOF-slag.
Assuntos
Resíduos Industriais , Oxigênio/química , Fósforo/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Resíduos Industriais/análise , Óxidos/química , TemperaturaRESUMO
Removal kinetics of phosphorus through use of basic oxygen furnace slag (BOF-slag) was investigated through batch experiments. Effects of several parameters such as initial phosphorus concentration, temperature, BOF-slag size, initial pH, and BOF-slag dosage on phosphorus removal kinetics were measured in detail. It was demonstrated that the removal process of phosphorus through BOF-slag followed pseudo-first-order reaction kinetics. The apparent rate constant (kobs) significantly decreased with increasing initial phosphorus concentration, BOF-slag size, and initial pH, whereas it exhibited an opposite trend with increasing reaction temperature and BOF-slag dosage. A linear dependence of kobs on total removed phosphorus (TRP) was established with kobs=(3.51±0.11)×10(-4)×TRP. Finally, it was suggested that the Langmuir-Rideal (L-R) or Langmuir-Hinshelwood (L-H) mechanism may be used to describe the removal process of phosphorus using BOF-slag.