Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1175894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360409

RESUMO

Introduction: Manganese (Mn) is an essential trace element for livestock, but little is known about the optimal Mn source and level for yak. Methods: To improve yak's feeding standards, a 48-h in vitro study was designed to examine the effect of supplementary Mn sources including Mn sulfate (MnSO4), Mn chloride (MnCl2), and Mn methionine (Met-Mn) at five Mn levels, namely 35 mg/kg, 40 mg/kg, 50 mg/kg, 60 mg/kg, and 70 mg/kg dry matter (includes Mn in substrates), on yak's rumen fermentation. Results: Results showed that Met-Mn groups showed higher acetate (p < 0.05), propionate, total volatile fatty acids (p < 0.05) levels, ammonia nitrogen concentration (p < 0.05), dry matter digestibility (DMD), and amylase activities (p < 0.05) compared to MnSO4 and MnCl2 groups. DMD (p < 0.05), amylase activities, and trypsin activities (p < 0.05) all increased firstly and then decreased with the increase of Mn level and reached high values at 40-50 mg/kg Mn levels. Cellulase activities showed high values (p < 0.05) at 50-70 mg/kg Mn levels. Microbial protein contents (p < 0.05) and lipase activities of Mn-Met groups were higher than those of MnSO4 and MnCl2 groups at 40-50 mg/kg Mn levels. Discussion: Therefore, Mn-met was the best Mn source, and 40 to 50 mg/kg was the best Mn level for rumen fermentation of yaks.

2.
Circulation ; 145(6): 448-464, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35034472

RESUMO

BACKGROUND: The nuclear receptor Rev-erbα/ß, a key component of the circadian clock, emerges as a drug target for heart diseases, but the function of cardiac Rev-erb has not been studied in vivo. Circadian disruption is implicated in heart diseases, but it is unknown whether cardiac molecular clock dysfunction is associated with the progression of any naturally occurring human heart diseases. Obesity paradox refers to the seemingly protective role of obesity for heart failure, but the mechanism is unclear. METHODS: We generated mouse lines with cardiac-specific Rev-erbα/ß knockout (KO), characterized cardiac phenotype, conducted multi-omics (RNA-sequencing, chromatin immunoprecipitation sequencing, proteomics, and metabolomics) analyses, and performed dietary and pharmacological rescue experiments to assess the time-of-the-day effects. We compared the temporal pattern of cardiac clock gene expression with the cardiac dilation severity in failing human hearts. RESULTS: KO mice display progressive dilated cardiomyopathy and lethal heart failure. Inducible ablation of Rev-erbα/ß in adult hearts causes similar phenotypes. Impaired fatty acid oxidation in the KO myocardium, in particular, in the light cycle, precedes contractile dysfunctions with a reciprocal overreliance on carbohydrate utilization, in particular, in the dark cycle. Increasing dietary lipid or sugar supply in the dark cycle does not affect cardiac dysfunctions in KO mice. However, obesity coupled with systemic insulin resistance paradoxically ameliorates cardiac dysfunctions in KO mice, associated with rescued expression of lipid oxidation genes only in the light cycle in phase with increased fatty acid availability from adipose lipolysis. Inhibition of glycolysis in the light cycle and lipid oxidation in the dark cycle, but not vice versa, ameliorate cardiac dysfunctions in KO mice. Altered temporal patterns of cardiac Rev-erb gene expression correlate with the cardiac dilation severity in human hearts with dilated cardiomyopathy. CONCLUSIONS: The study delineates temporal coordination between clock-mediated anticipation and nutrient-induced response in myocardial metabolism at multi-omics levels. The obesity paradox is attributable to increased cardiac lipid supply from adipose lipolysis in the fasting cycle due to systemic insulin resistance and adiposity. Cardiac molecular chronotypes may be involved in human dilated cardiomyopathy. Myocardial bioenergetics downstream of Rev-erb may be a chronotherapy target in treating heart failure and dilated cardiomyopathy.


Assuntos
Ritmo Circadiano/fisiologia , Miocárdio/patologia , Obesidade/fisiopatologia , Animais , Relógios Circadianos , Cardiopatias , Humanos , Camundongos , Camundongos Knockout
3.
Br J Nutr ; 123(11): 1258-1268, 2020 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-32077388

RESUMO

The objective of this study was to explore the metabolic profiles of pregnancy malnutrition induced by feed restriction (FR) and the counteracting effects of glycerol and rumen-protected choline chloride supplementation. Two feeding trials were conducted. In the first experiment, twenty pregnant Hu sheep carrying multiple fetuses with a gestation period of 108 d were randomly divided into two groups. The ewes in the control (CON) group were offered 100 % of their nutritional requirements as recommended by the National Research Council (NRC), while the FR group was offered 30 % of feed intake of CON for 15 d. In the second experiment, eighteen pregnant Hu sheep were offered a feed intake comprising 30 % of the NRC-recommended nutritional requirements twice daily. The sheep were randomly divided into three groups: the FR group in the second experiment (FR2), with no supplementation, the glycerol (GLY) group, which received 40 ml of glycerol per d, and the rumen-protected choline chloride (RPC) group, which received 10 g of rumen-protected choline chloride per d for 9 d. In the first experiment, the urine metabolome of sixteen ewes showed significant difference between the CON group and FR group. Compared with the CON group, FR decreased the level of d-glucose, lactic acid, levoglucosan, α-ketoglutarate, phosphohydroxypyruvic acid, glucose 6-phosphate and the methyl donors, while increasing the level of pyruvate, fumaric acid and carnitines in urine. Both the GLY and RPC treatments counteracted some of these changes and modulated the urine metabolome in advanced pregnant ewes suffering from malnutrition.


Assuntos
Colina/administração & dosagem , Suplementos Nutricionais , Glicerol/administração & dosagem , Desnutrição/urina , Urina/química , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Feminino , Fenômenos Fisiológicos da Nutrição Materna , Metaboloma , Necessidades Nutricionais , Gravidez , Rúmen/metabolismo , Ovinos
4.
J Sci Food Agric ; 96(3): 909-14, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25752512

RESUMO

BACKGROUND: Cinnamaldehyde (CA) has been widely applied in medicine and food preservation. However, whether and how CA regulates plant physiology is largely unknown. To address these gaps, the present study investigated the beneficial effect of CA on root branching and its possible biochemical mechanism. RESULTS: The lateral root (LR) formation of pepper seedlings could be markedly induced by CA at specific concentrations without any inhibitory effect on primary root (PR) growth. CA could induce the generation of endogenous hydrogen sulfide (H2S) by increasing the activity of L-cysteine desulfhydrase in roots. By fluorescently tracking endogenous H2S in situ, it could be clearly observed that H2S accumulated in the outer layer cells of the PR where LRs emerge. Sodium hydrosulfide (H2S donor) treatment induced LR formation, while hypotaurine (H2S scavenger) showed an adverse effect. The addition of hypotaurine mitigated the CA-induced increase in endogenous H2S level, which in turn counteracted the inducible effect of CA on LR formation. CONCLUSION: CA showed great potential in promoting LR formation, which was mediated by endogenous H2S. These results not only shed new light on the application of CA in agriculture but also extend the knowledge of H2S signaling in the regulation of root branching.


Assuntos
Acroleína/análogos & derivados , Aditivos Alimentares/farmacologia , Óleos de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Acroleína/farmacologia , Relação Dose-Resposta a Droga , Humanos , Raízes de Plantas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA