RESUMO
Bacosides are dammarane-type triterpenoidal saponins in Bacopa monnieri and have various pharmacological applications. All the bacosides are diversified from two isomers, i.e., jujubogenin and pseudojujubogenin. The biosynthetic pathway of bacoside is not well elucidated. In the present study, we characterized a UDP-glycosyltransferase, UGT79A18, involved in the glycosylation of pseudojujubogenin. UGT79A18 shows higher expression in response to 5 h of wounding, and 3 h of MeJA treatment. The recombinant UGT79A18 shows in vitro activity against a wide range of flavonoids and triterpenes and has a substrate preference for protopanaxadiol, a dammarane-type triterpene. Secondary metabolite analysis of overexpression and knockdown lines of UGT79A18 in B. monnieri identify bacopasaponin D, bacopaside II, bacopaside N2 and pseudojujubogenin glucosyl rhamnoside as the major bacosides that were differentially accumulated. In the overexpression lines of UGT79A18, we found 1.7-fold enhanced bacopaside II, 8-fold enhanced bacopasaponin D, 3-fold enhanced pseudojujubogenin glucosyl rhamnoside, and 1.6-fold enhanced bacopaside N2 content in comparison with vector control plant, whereas in the knockdown lines of UGT79A18, we found 1.4-fold reduction in bacopaside II content, 3-fold reduction in the bacopasaponin D content, 2-fold reduction in the pseudojujubogenin glucosyl rhamnoside content, and 1.5-fold reduction in bacopaside N2 content in comparison with vector control. These results suggest that UGT79A18 is a significant UDP glycosyltransferase involved in glycosylating pseudojujubogenin and enhancing the pseudojujubogenin-derived bacosides.
Assuntos
Acetatos , Bacopa , Ciclopentanos , Oxilipinas , Saponinas , Triterpenos , Bacopa/genética , Bacopa/química , Glicosiltransferases/genética , Vias Biossintéticas , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Damaranos , Difosfato de Uridina , Extratos Vegetais/químicaRESUMO
The medicinal plant Withania somnifera is researched extensively to increase the quantity of withanolides and specifically withaferin A, which finds implications in many pharmacological activities. Due to insufficient knowledge on biosynthesis and unacceptability of transgenic approach, it is preferred to follow alternative physiological methods to increase the yield of withanolides. Prior use of elicitors like salicylic acid, methyl jasmonate, fungal extracts, and even mechanical wounding have shown to increase the withanolide biosynthesis with limited success; however, the commercial viability and logistics of application are debatable. In this investigation, we tested the simple nitrogeneous fertilizers pertaining to the enhancement of withaferin A biosynthesis. Application of ammonium sulfate improved the sterol contents required for the withanolide biosynthesis and correlated to higher expression of pathway genes like FPPS, SMT1, SMT2, SMO1, SMO2, and ODM. Increased expression of a gene homologous to allene oxide cyclase, crucial in jasmonic acid biosynthetic pathway, suggested the involvement of jasmonate signaling. High levels of WRKY gene transcripts indicated transcriptional regulation of the pathway genes. Increase in transcript level could be correlated with a corresponding increase in the protein levels for WsSMT1 and WsWRKY1. The withaferin A increase was also demonstrated in the potted plants growing in the glasshouse and in the open field. These results implicated simple physiological management of nitrogen fertilizer signal to improve the yield of secondary metabolite through probable involvement of jasmonate signal and WRKY transcription factor for the first time, in W. somnifera besides improving the foliage.
Assuntos
Vias Biossintéticas/genética , Ciclopentanos/metabolismo , Nitrogênio/farmacologia , Oxilipinas/metabolismo , Esteróis/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/efeitos dos fármacos , Withania/genética , Vitanolídeos/metabolismo , Sulfato de Amônio/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Fósforo/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potássio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ureia/farmacologia , Withania/efeitos dos fármacosRESUMO
Vitex trifolia L. is an important Indian medicinal plant with diverse pharmacological properties. In a recent study, we reported the isolation and antitubercular activity evaluation of three new diterpenoids from its leaves; here we have developed a validated rapid, simple, precise, and accurate high-performance TLC method for the simultaneous quantification of isolated diterpenoids in V. trifolia. Diterpenoids, 6α,7α-diacetoxy-13-hydroxy-8(9),14-labdadien (A), 13-hydroxy-5(10),14-halimadien-6-one (B), and 9-hydroxy-13(14)-labden-16,15-olide (C) were separated on silica gel 60F254 high-performance TLC plates using chloroform/acetone (98:2, v/v) as mobile phase. The quantitation of diterpenoids was carried out using densitometric reflection/absorption mode at 610 nm after postchromatographic derivatization using a vanillin/sulfuric acid reagent. A precise and accurate quantification can be performed for compounds A and B in the linear working concentration range of 333-1000 ng/band and for C in the range of 670-2000 ng/band with good correlations (r = 0.9984, 0.9991, and 0.9994, respectively). The method was validated for peak purity, precision, accuracy, robustness, LOD, and LOQ, as per the ICH guidelines. The method reported here is simple, reproducible and may be applied for the quantitative analysis of the above diterpenoids in the leaves of V. trifolia.