Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 5: 1845-1872, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276240

RESUMO

Cancer is among the major cause of demise worldwide. Though the array of anticancer chemical medications is available but unfortunately, they are also associated with negative health effects. The invaluable therapeutic potential of spices makes them an integral part of our daily diet. Therefore, the present work focuses on the traditional uses of 46 spices and the phytochemical analysis of 31 spices. Out of them, only 29 spices are explored for their cytotoxicity against different cancer cell lines. The pre-clinical and clinical anticancer studies of spices along with their toxicity, mechanism of actions like Wnt/ß-catenin, phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), JAK/STAT, mitogen-activated protein kinase (MAPK), Notch-mediated pathways and Quantitative structure-activity relationship (QSAR) studies were also focused. Curcumin was found as one of the most explored bioactive in every aspect such as in-vitro, in-vivo, clinical as well as SAR anticancer studies while some other bioactive such as 1,8-Cineole, trans-Anethole, Diosgenin, Trigonelline are either unexplored or least explored for their clinical and SAR studies. In fact, traditional medicinal uses of spices also provide solid shreds of evidence for the new leads towards the invention of novel anticancer agents. Therefore, further research can be designed for the anticancer marketed formulation from spices after having their placebo and related toxicological data.

2.
Curr Res Food Sci ; 5: 1508-1523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132490

RESUMO

Spices are an affluentpool of polyphenolcompounds that possessgigantic medicinal peculiarities such as remedying microbial infections, oxidative stress, inflammation, diabetes, cancers, neurodegenerative disorders, cardiac disorders, etc. On that account, thepresent review illustrates the therapeutic potential, mechanism of action, and different procedures for conscious extraction of polyphenols. The various ethnopharmacological properties; reasons for their diverse pharmacological actions and the mechanism of action of spices-derived phenolics have also been discussed. The findings of this review may be utilized by the food and pharmaceutical industries for developing suitable alternatives to synthetic antioxidants and can be developed into effective food supplements. Further in-depth scientific studies are needed to find out their actual and exact relevance as natural health boosters. Moreover, clinical and toxicological studies are also required for harnessing the full therapeutic potential of polyphenols derived from dietary spices.

3.
Eur J Pharmacol ; 925: 174995, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35523319

RESUMO

The skeletal muscle (SkM) is the largest organ, which plays a vital role in controlling musculature, locomotion, body heat regulation, physical strength, and metabolism of the body. A sedentary lifestyle, aging, cachexia, denervation, immobilization, etc. Can lead to an imbalance between protein synthesis and degradation, which is further responsible for SkM atrophy (SmA). To date, the understanding of the mechanism of SkM mass loss is limited which also restricted the number of drugs to treat SmA. Thus, there is an urgent need to develop novel approaches to regulate muscle homeostasis. Presently, some natural products attained immense attraction to regulate SkM homeostasis. The natural products, i.e., polyphenols (resveratrol, curcumin), terpenoids (ursolic acid, tanshinone IIA, celastrol), flavonoids, alkaloids (tomatidine, magnoflorine), vitamin D, etc. exhibit strong potential against SmA. Some of these natural products have been reported to have equivalent potential to standard treatments to prevent body lean mass loss. Indeed, owing to the large complexity, diversity, and slow absorption rate of bioactive compounds made their usage quite challenging. Moreover, the use of natural products is controversial due to their partially known or elusive mechanism of action. Therefore, the present review summarizes various experimental and clinical evidence of some important bioactive compounds that shall help in the development of novel strategies to counteract SmA elicited by various causes.


Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Caquexia/metabolismo , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/prevenção & controle , Polifenóis
4.
Phytother Res ; 35(9): 5007-5030, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33893678

RESUMO

Cuminum cyminum L. is a versatile spice belonging to family Apiaceae. Though the plant has pan-tropical distribution but it is indigenous to Egypt, the Mediterranean, and South Asian countries. It exhibits numerous culinary, traditional, and pharmacological attributes. Its traditional uses also validate its immense pharmacological potential. Cuminum cyminum is the hub of numerous bioactives such as alkaloids, flavonoids, terpenoids, and so forth. Cuminaldehyde is the major bioactive, rendered to most of its pharmacological as well as clinical significance. The present study comprised of current knowledge on its taxonomy, nutritional, traditional, phytochemistry, pharmacology (antimicrobial, antioxidant, anti-inflammation, antidiabetic, wound healing, anticancer, etc.), toxicology, and clinical attributes. Besides, the mechanism of action is also well explained. The present study provides a rationale for further bioprospection of this wonder plant. Future studies are needed to fill the research gaps, particularly on relevant phytocompound isolation, their pre-clinical and clinical characterization, evaluation, and structure-activity relationship. Moreover, well-designed and highly appropriate clinical and placebo trials are still needed to demonstrate the trustworthy role of cumin on human health.


Assuntos
Cuminum , Compostos Fitoquímicos/farmacologia , Cuminum/química , Humanos , Extratos Vegetais/farmacologia , Especiarias/análise
5.
Food Chem ; 338: 127773, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32829297

RESUMO

Cinnamomum verum is the widely used spice for its medicinal and culinary uses since ages. It is native to Sri Lanka and southern India but also distributed in many Asian, Caribbean, Australian and African countries. It is widely used in food preparations and industrial products like candies, chewing gums, mouthwash and toothpaste. It is also used to treat asthma, bronchitis, diarrhea, headache, inflammation and cardiac disorders. Cinnamaldehyde, eugenol, caryophyllene, cinnamyl acetate and cinnamic acid are the major compounds found in its essential oil. These compounds exhibit a wide range of pharmacological activities including antioxidant, antimicrobial, anti-inflammatory, anticancer, antidiabetic, wound healing, anti-HIV, anti-anxiety and antidepressant, etc. This review highlights its comprehensive and up-to-date information on taxonomy, ethnomedicinal uses, phytochemical composition, pharmacological and toxicity activities. Structure-activity relationship, mechanism of action and some research gaps has also been provided. Owing to its immense medicinal importance, more well-designed in-vivo and clinical studies are required.


Assuntos
Cinnamomum zeylanicum/química , Valor Nutritivo , Compostos Fitoquímicos/análise , Especiarias/análise , Animais , Etnofarmacologia , Humanos
6.
Phytother Res ; 33(9): 2163-2178, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31290201

RESUMO

Ageratum conyzoides L. (Asteraceae) is an invasive aromatic herb with immense therapeutic importance. The herb is distributed in tropical and subtropical regions. A. conyzoides has imparted numerous ethnomedicinal uses because it has been used to cure various ailments that include leprosy, skin disorders, sleeping sickness, rheumatism, headaches, dyspnea, toothache, pneumonia and many more. A number of phytoconstituents have been scrutinized such as alkaloids, flavonoids, terpenes, chromenes, and sterols from almost every part of this plant. These phytoconstituents have shown diverse pharmacological properties including antimicrobial, anti-inflammatory, analgesic, antioxidant, anticancer, antiprotozoal, antidiabetic, spasmolytic, allelopathy, and many more. The plant A. conyzoides has provided a platform for doing pharmaceutical and toxicological research in order to isolate some promising active compounds and authenticate their safety in clinical uses. A. conyzoides provides principal information for advanced studies in the field of pharmaceutical industries and agriculture. Present review article describes the cytogenetics, ethnobotany, phytochemistry, pharmacology, and toxicological aspects of A. conyzoides.


Assuntos
Ageratum/química , Etnofarmacologia/métodos , Compostos Fitoquímicos/uso terapêutico , Fitoterapia/métodos , Humanos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
7.
Biomed Res Int ; 2014: 401213, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24949441

RESUMO

Holoptelea integrifolia (Ulmaceae) is a versatile medicinal plant used in various indigenous systems of medicine for curing routine healthcare maladies. It is traditionally used in the treatment and prevention of several ailments like leprosy, inflammation, rickets, leucoderma, scabies, rheumatism, ringworm, eczema, malaria, intestinal cancer, and chronic wounds. In vitro and in vivo pharmacological investigations on crude extracts and isolated compounds showed antibacterial, antifungal, analgesic, antioxidant, anti-inflammatory, anthelmintic, antidiabetic, antidiarrhoeal, adaptogenic, anticancer, wound healing, hepatoprotective, larvicidal, antiemetic, CNS depressant, and hypolipidemic activities. Phytochemical analysis showed the presence of terpenoids, sterols, saponins, tannins, proteins, carbohydrates, alkaloids, phenols, flavonoids, glycosides, and quinines. Numerous compounds including Holoptelin-A, Holoptelin-B, friedlin, epifriedlin, ß -amyrin, stigmasterol, ß -sitosterol, 1, 4-napthalenedione, betulin, betulinic acid, hexacosanol, and octacosanol have been identified and isolated from the plant species. The results of several studies indicated that H. integrifolia may be used as an effective therapeutic remedy in the prevention and treatment of various ailments. However, further studies on chemical constituents and their mechanisms in exhibiting certain biological activities are needed. In addition, study on the toxicity of the crude extracts and the compounds isolated from this plant should be assessed to ensure their eligibility to be used as source of modern medicines.


Assuntos
Etnobotânica , Extratos Vegetais/uso terapêutico , Plantas Medicinais/química , Analgésicos/química , Analgésicos/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Extratos Vegetais/química , Ulmaceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA