Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Basic Microbiol ; 64(4): e2300585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346247

RESUMO

This study aimed to isolate biosurfactant-producing and hydrocarbon-degrading actinomycetes from different soils using glycerol-asparagine and starch-casein media with an antifungal agent. The glycerol-asparagine agar exhibited the highest number of actinomycetes, with a white, low-opacity medium supporting pigment production and high growth. Biosurfactant analyses, such as drop collapse, oil displacement, emulsification, tributyrin agar test, and surface tension measurement, were conducted. Out of 25 positive isolates, seven could utilize both olive oil and black oil for biosurfactant production, and only isolate RP1 could produce biosurfactant when grown in constrained conditions with black oil as the sole carbon source and inducer, demonstrating in situ bioremediation potential. Isolate RP1 from oil-spilled garden soil is Gram-staining-positive with a distinct earthy odor, melanin formation, and white filamentous colonies. It has a molecular size of ~621 bp and 100% sequence similarity to many Streptomyces spp. Morphological, biochemical, and 16 S rRNA analysis confirmed it as Streptomyces sp. RP1, showing positive results in all screenings, including high emulsification activity against kerosene (27.2%) and engine oil (95.8%), oil displacement efficiency against crude oil (7.45 cm), and a significant reduction in surface tension (56.7 dynes/cm). Streptomyces sp. RP1 can utilize citrate as a carbon source, tolerate sodium chloride, resist lysozyme, degrade petroleum hydrocarbons, and produce biosurfactant at 37°C in a 15 mL medium culture, indicating great potential for bioremediation and various downstream industrial applications with optimization.


Assuntos
Actinobacteria , Petróleo , Streptomyces , Actinobacteria/genética , Actinobacteria/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Actinomyces/metabolismo , Biodegradação Ambiental , Ágar , Glicerol , Asparagina , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Carbono , Tensoativos/química
2.
Biology (Basel) ; 11(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36009841

RESUMO

Mycobacterium tuberculosis has seen tremendous success as it has developed defenses to reside in host alveoli despite various host-related stress circumstances. Rv1636 is a universal stress protein contributing to mycobacterial survival in different host-derived stress conditions. Both ATP and cAMP can be bound with the Rv1636, and their binding actions are independent of one another. ß-Amyrin, a triterpenoid compound, is abundant in medicinal plants and has many pharmacological properties and broad therapeutic potential. The current study uses biochemical, biophysical, and computational methods to define the binding of Rv1636 with ß-Amyrin. A substantial interaction between ß-Amyrin and Rv1636 was discovered by molecular docking studies, which helped decipher the critical residues involved in the binding process. VAL60 is a crucial residue found in the complexes of both Rv1636_ß-Amyrin and Rv1636-ATP. Additionally, the Rv1636_ß-Amyrin complex was shown to be stable by molecular dynamics simulation studies (MD), with minimal changes observed during the simulation. In silico observations were further complemented by in vitro assays. Successful cloning, expression, and purification of Rv1636 were accomplished using Ni-NTA affinity chromatography. The results of the ATPase activity assay indicated that Rv1636's ATPase activity was inhibited in the presence of various ß-Amyrin concentrations. Additionally, circular dichroism spectroscopy (CD) was used to examine modifications to Rv1636 secondary structure upon binding of ß-Amyrin. Finally, isothermal titration calorimetry (ITC) advocated spontaneous binding of ß-Amyrin with Rv1636 elucidating the thermodynamics of the Rv1636_ß-Amyrin complex. Thus, the study establishes that ß-Amyrin binds to Rv1636 with a significant affinity forming a stable complex and inhibiting its ATPase activity. The present study suggests that ß-Amyrin might affect the functioning of Rv1636, which makes the bacterium vulnerable to different stress conditions.

3.
Bioprocess Biosyst Eng ; 44(7): 1577-1592, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33687550

RESUMO

The present study focused on lipopeptide biosurfactant production by Streptomyces sp. PBD-410L in batch and fed-batch fermentation in a 3-L stirred-tank reactor (STR) using palm oil as a sole carbon source. In batch cultivation, the impact of bioprocessing parameters, namely aeration rate and agitation speed, was studied to improve biomass growth and lipopeptide biosurfactant production. The maximum oil spreading technique (OST) result (45 mm) which corresponds to 3.74 g/L of biosurfactant produced, was attained when the culture was agitated at 200 rpm and aeration rate of 0.5 vvm. The best aeration rate and agitation speed obtained from the batch cultivation was adopted in the fed-batch cultivation using DO-stat feeding strategy to further improve the lipopeptide biosurfactant production. The lipopeptide biosurfactant production was enhanced from 3.74 to 5.32 g/L via fed-batch fermentation mode at an initial feed rate of 0.6 mL/h compared to that in batch cultivation. This is the first report on the employment of fed-batch cultivation on the production of biosurfactant by genus Streptomyces.


Assuntos
Biotecnologia/métodos , Microbiologia Industrial/métodos , Lipopeptídeos/química , Óleo de Palmeira/química , Streptomyces/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Biomassa , Reatores Biológicos , Carbono , Meios de Cultura , Fermentação , Tensoativos , Fatores de Tempo
4.
Pak J Pharm Sci ; 32(5): 2197-2202, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31813888

RESUMO

Cardiovascular diseases are top cause of mortality in the world. Current interventional therapy and pharmacotherapy may alleviate symptoms or slow disease progression but are unable to cure or treat them. Molecular and pathophysiological advances have paved the way for contemporary biological therapies to be tested and standardized for the treatment of these diseases. Stem cells therapy and gene therapy has shown promise in the treatment of CVDs. Various types of stem cells used in cardiac conditions like myocardial infarction with the aim of regenerating the damaged myocardium have had variable success rates in clinical and preclinical trials. Improvements in methods and routes of cell delivery have improved clinical outcomes. Gene therapy employs therapeutic genes to treat diseases. Advances in vectors have improved transfection efficiencies and transgene expression and enhanced role in Heart failure, ischemic disease as well as arrhythmias. Clinical trials have shown improved cardiac function upon treatment with genes which promote angiogenesis. The current review looks at the role of these biological therapies in cardiovascular diseases.


Assuntos
Terapia Biológica/métodos , Doenças Cardiovasculares/terapia , Animais , Terapia Genética/métodos , Humanos , Infarto do Miocárdio/terapia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Células-Tronco/citologia
5.
J Gen Appl Microbiol ; 58(2): 153-61, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22688247

RESUMO

A biosurfactant-producing and hydrocarbon-utilizing bacterium, Pseudomonas aeruginosa USM-AR2, was used to assist conventional distillation. Batch cultivation in a bioreactor gave a biomass of 9.4 g L(-1) and rhamnolipid concentration of 2.4 g L(-1) achieved after 72 h. Biosurfactant activity (rhamnolipid) was detected by the orcinol assay, emulsification index and drop collapse test. Pretreatment of crude oil TK-1 and AG-2 with a culture of P. aeruginosa USM-AR2 that contains rhamnolipid was proven to facilitate the distillation process by reducing the duration without reducing the quality of petroleum distillate. It showed a potential in reducing the duration of the distillation process, with at least 2- to 3-fold decreases in distillation time. This is supported by GC-MS analysis of the distillate where there was no difference between compounds detected in distillate obtained from treated or untreated crude oil. Calorimetric tests showed the calorie value of the distillate remained the same with or without treatment. These two factors confirmed that the quality of the distillate was not compromised and the incubation process by the microbial culture did not over-degrade the oil. The rhamnolipid produced by this culture was the main factor that enhanced the distillation performance, which is related to the emulsification of hydrocarbon chains in the crude oil. This biotreatment may play an important role to improve the existing conventional refinery and distillation process. Reducing the distillation times by pretreating the crude oil with a natural biosynthetic product translates to energy and cost savings in producing petroleum products.


Assuntos
Biotecnologia/métodos , Destilação/métodos , Glicolipídeos/biossíntese , Petróleo/metabolismo , Pseudomonas aeruginosa/metabolismo , Biomassa , Reatores Biológicos , Meios de Cultura , Cromatografia Gasosa-Espectrometria de Massas , Glicolipídeos/química , Pseudomonas aeruginosa/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA