Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 105(24): 9321-9332, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34797390

RESUMO

Infections caused by carbapenem-resistant Pseudomonas aeruginosa are life-threatening due to its synergistic resistance mechanisms resulting in the ineffectiveness of the used antimicrobials. This study aimed to characterize P. aeruginosa isolates for antimicrobial susceptibility, biofilm formation virulence genes, and molecular mechanisms responsible for resistance against various antimicrobials. Out of 700 samples, 91 isolates were confirmed as P. aeruginosa which were further classified into 19 non-multidrug-resistant (non-MDR), 7 multidrug-resistant (MDR), 19 extensively drug-resistant (XDR), and 8 pan drug-resistant (PDR) pulsotypes based on standard Kirby Bauer disc diffusion test and pulse field gel electrophoresis. In M9 minimal media, strong biofilms were formed by the XDR and PDR pulsotypes as compared to the non-MDR pulsotypes. The virulence genes, responsible for the worsening of wounds including LasB, plcH, toxA, and exoU, were detected among all MDR, XDR, and PDR pulsotypes. Carbapenemase activity was phenotypically detected in 45% pulsotypes and the responsible genes were found as blaGES (100%), blaVIM (58%), blaIMP (4%), and blaNDM (4%). Real-time polymerase chain reaction showed the concomitant use of multiple mechanisms such as oprD under-expression, enhanced efflux pump activity, and ampC overexpression in the resistant isolates. Polymyxin is found as the only class left with more than 80% susceptibility among the isolates which is an alarming situation suggesting appropriate measures to be taken including alternative therapies. KEY POINTS: • Multidrug-resistant P. aeruginosa isolates formed stronger biofilms in minimal media. • Only polymyxin antimicrobial was found effective against MDR P. aeruginosa isolates. • Under-expression of oprD and overexpression of ampC were found in resistant isolates.


Assuntos
Infecções por Pseudomonas , Infecção dos Ferimentos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , beta-Lactamases/genética
2.
J Biol Chem ; 294(45): 16978-16991, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31586033

RESUMO

Transition metals serve as an important class of micronutrients that are indispensable for bacterial physiology but are cytotoxic when they are in excess. Bacteria have developed exquisite homeostatic systems to control the uptake, storage, and efflux of each of biological metals and maintain a thermodynamically balanced metal quota. However, whether the pathways that control the homeostasis of different biological metals cross-talk and render cross-resistance or sensitivity in the host-pathogen interface remains largely unknown. Here, we report that zinc (Zn) excess perturbs iron (Fe) and copper (Cu) homeostasis in Escherichia coli, resulting in increased Fe and decreased Cu levels in the cell. Gene expression analysis revealed that Zn excess transiently up-regulates Fe-uptake genes and down-regulates Fe-storage genes and thereby increases the cellular Fe quota. In vitro and in vivo protein-DNA binding assays revealed that the elevated intracellular Fe poisons the primary Cu detoxification transcription regulator CueR, resulting in dysregulation of its target genes copA and cueO and activation of the secondary Cu detoxification system CusSR-cusCFBA Supplementation with the Fe chelator 2,2'-dipyridyl (DIP) or with the reducing agent GSH abolished the induction of cusCFBA during Zn excess. Consistent with the importance of this metal homeostatic network in cell physiology, combined metal treatment, including simultaneously overloading cells with both Zn (0.25 mm) and Cu (0.25 mm) and sequestering Fe with DIP (50 µm), substantially inhibited E. coli growth. These results advance our understanding of bacterial metallobiology and may inform the development of metal-based antimicrobial regimens to manage infectious diseases.


Assuntos
Cobre/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Ferro/metabolismo , Zinco/farmacologia , Transporte Biológico/efeitos dos fármacos , Escherichia coli/citologia , Homeostase/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Estresse Oxidativo/efeitos dos fármacos
3.
J Bacteriol ; 195(20): 4556-68, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23893112

RESUMO

Adaptation to changing environments is essential to bacterial physiology. Here we report a unique role of the copper homeostasis system in adapting Escherichia coli to its host-relevant environment of anaerobiosis coupled with amino acid limitation. We found that expression of the copper/silver efflux pump CusCFBA was significantly upregulated during anaerobic amino acid limitation in E. coli without the supplement of exogenous copper. Inductively coupled plasma mass spectrometry analysis of the total intracellular copper content combined with transcriptional assay of the P(cusC)-lacZ reporter in the presence of specific Cu(I) chelators indicated that anaerobic amino acid limitation led to the accumulation of free Cu(I) in the periplasmic space of E. coli, resulting in Cu(I) toxicity. Cells lacking cusCFBA and another copper transporter, copA, under this condition displayed growth defects and reduced ATP production during fumarate respiration. Ectopic expression of the Fe-S cluster enzyme fumarate reductase (Frd), or supplementation with amino acids whose biosynthesis involves Fe-S cluster enzymes, rescued the poor growth of ΔcusC cells. Yet, Cu(I) treatment did not impair the Frd activity in vitro. Further studies revealed that the alternative Fe-S cluster biogenesis system Suf was induced during the anaerobic amino acid limitation, and ΔcusC enhanced this upregulation, indicating the impairment of the Fe-S cluster assembly machinery and the increased Fe-S cluster demands under this condition. Taken together, we conclude that the copper efflux system CusCFBA is induced during anaerobic amino acid limitation to protect Fe-S cluster enzymes and biogenesis from the endogenously originated Cu(I) toxicity, thus facilitating the physiological adaptation of E. coli.


Assuntos
Aminoácidos/metabolismo , Cobre/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas Ferro-Enxofre/metabolismo , Adaptação Fisiológica , Anaerobiose , Transporte Biológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA