RESUMO
Spirulina, an herbal supplement and popular ingredient in health foods, is a potent stimulant of the immune system. Spirulina use is temporally associated with the onset or exacerbation of Dermatomyositis (DM), an autoimmune connective tissue disease that frequently affects the skin and muscle. In this study, we investigated the effect of Spirulina on peripheral blood mononuclear cells (PBMCs) in DM and Healthy Controls (HCs), showing that Spirulina stimulates Interferon ß (IFNß), Tumor necrosis factor α (TNFα), and Interferon γ (IFNγ) production of DM PBMCs primarily via Toll-Like Receptor 4 (TLR4) activation using ELISA (enzyme linked immunosorbent assay) and flow cytometry. We show that classical monocytes and monocyte-derived dendritic cells are stimulated by Spirulina and are activated via TLR4. Skin from patients with Spirulina-associated DM exhibits an inflammatory milieu similar to that of idiopathic DM but with a stronger correlation of TLR4 and IFNγ.
RESUMO
Near-infrared light-responsive inorganic nanoparticles have been shown to enhance the efficacy of cancer photothermal ablation therapy. However, current nanoparticle-mediated photothermal ablation is more effective in treating local cancer at the primary site than metastatic cancer. Here, we report the design of a near-infrared light-induced transformative nanoparticle platform that combines photothermal ablation with immunotherapy. The design is based on chitosan-coated hollow CuS nanoparticles that assemble the immunoadjuvants oligodeoxynucleotides containing the cytosine-guanine (CpG) motifs. Interestingly, these structures break down after laser excitation, reassemble, and transform into polymer complexes that improve tumor retention of the immunotherapy. In this "photothermal immunotherapy" approach, photothermal ablation-induced tumor cell death reduces tumor growth and releases tumor antigens into the surrounding milieu, while the immunoadjuvants potentiate host antitumor immunity. Our results indicated that combined photothermal immunotherapy is more effective than either immunotherapy or photothermal therapy alone against primary treated and distant untreated tumors in a mouse breast cancer model. These hollow CuS nanoparticles are biodegradable and can be eliminated from the body after laser excitation.