Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Chem ; 10: 881975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646826

RESUMO

Natural compounds (NCs) undergo complicated biotransformation in vivo to produce diverse forms of metabolites dynamically, many of which are of high medicinal value. Predicting the profiles of chemical products may help to narrow down possible candidates, yet current computational methods for predicting biotransformation largely focus on synthetic compounds. Here, we proposed a method of MetNC, a tailor-made method for NC biotransformation prediction, after exploring the overall patterns of NC in vivo metabolism. Based on 850 pairs of the biotransformation dataset validated by comprehensive in vivo experiments with sourcing compounds from medicinal plants, MetNC was designed to produce a list of potential metabolites through simulating in vivo biotransformation and then prioritize true metabolites into the top list according to the functional groups in compound structures and steric hindrance around the reaction sites. Among the well-known peers of GLORYx and BioTransformer, MetNC gave the highest performance in both the metabolite coverage and the ability to short-list true products. More importantly, MetNC seemed to display an extra advantage in recommending the microbiota-transformed metabolites, suggesting its potential usefulness in the overall metabolism estimation. In summary, complemented to those techniques focusing on synthetic compounds, MetNC may help to fill the gap of natural compound metabolism and narrow down those products likely to be identified in vivo.

2.
Nucleic Acids Res ; 50(D1): D1238-D1243, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34986599

RESUMO

Literature-described targets of herbal ingredients have been explored to facilitate the mechanistic study of herbs, as well as the new drug discovery. Though several databases provided similar information, the majority of them are limited to literatures before 2010 and need to be updated urgently. HIT 2.0 was here constructed as the latest curated dataset focusing on Herbal Ingredients' Targets covering PubMed literatures 2000-2020. Currently, HIT 2.0 hosts 10 031 compound-target activity pairs with quality indicators between 2208 targets and 1237 ingredients from more than 1250 reputable herbs. The molecular targets cover those genes/proteins being directly/indirectly activated/inhibited, protein binders, and enzymes substrates or products. Also included are those genes regulated under the treatment of individual ingredient. Crosslinks were made to databases of TTD, DrugBank, KEGG, PDB, UniProt, Pfam, NCBI, TCM-ID and others. More importantly, HIT enables automatic Target-mining and My-target curation from daily released PubMed literatures. Thus, users can retrieve and download the latest abstracts containing potential targets for interested compounds, even for those not yet covered in HIT. Further, users can log into 'My-target' system, to curate personal target-profiling on line based on retrieved abstracts. HIT can be accessible at http://hit2.badd-cao.net.


Assuntos
Bases de Dados Factuais , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas , Medicamentos de Ervas Chinesas/classificação , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Medicina Tradicional Chinesa , Ligação Proteica/efeitos dos fármacos , Proteínas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA