Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5140-5157, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36472021

RESUMO

Angelicae Sinensis Radix, as a medicinal and edible Chinese medicinal herb, is widely used in clinical practice. It is mainly cultivated in Minxian, Tanchang, Zhangxian and Weiyuan counties of Gansu province. In recent years, with the comprehensive and in-depth study of Angelicae Sinensis Radix in China and abroad, its chemical composition, pharmacological effects and application and development have attracted much attention. In this study, the chemical composition, traditional efficacy, and modern pharmacological effects of Angelicae Sinensis Radix were summarized. On this basis, combined with the core concept of quality markers(Q-markers), the Q-markers of Angelicae Sinensis Radix were discussed from the aspects of mass transfer and traceability and chemical composition specificity, availability, and measurability, which provided scientific basis for the quality evaluation of Angelicae Sinensis Radix.


Assuntos
Angelica sinensis , Medicamentos de Ervas Chinesas , Angelica sinensis/química , Medicamentos de Ervas Chinesas/farmacologia , Raízes de Plantas/química , China
2.
Mol Microbiol ; 97(1): 18-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25846564

RESUMO

Endocytosis and exocytosis are strictly segregated at the ends of hyphal cells of filamentous fungi, with a collar of endocytic activity encircling the growing cell tip, which elongates through directed membrane fusion. It has been proposed that this separation supports an endocytic recycling pathway that maintains polar localization of proteins at the growing apex. In a search for proteins in the filamentous fungus Aspergillus nidulans that possess an NPFxD motif, which signals for endocytosis, a Type 4 P-Type ATPase was identified and named DnfA. Interestingly, NPFxD is at a different region of DnfA than the same motif in the Saccharomyces cerevisiae ortholog, although endocytosis is dependent on this motif for both proteins. DnfA is involved in asexual sporulation and polarized growth. Additionally, it is segregated within the Spitzenkörper from another Type 4 P-type ATPase, DnfB. Next, the phosphatidylserine marker GFP::Lact-C2 was expressed in growing hyphae, which revealed that this phospholipid is enriched on the cytosolic face of secretory vesicles. This distribution is affected by deleting either dnfA or dnfB. These findings provide evidence for the spatial and temporal segregation of Type4-ATPases in filamentous fungi, and the asymmetric distribution of phosphatidylserine to the Spitzenkörper in A. nidulans.


Assuntos
Adenosina Trifosfatases/metabolismo , Aspergillus nidulans/enzimologia , Aspergillus nidulans/crescimento & desenvolvimento , Endocitose , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Aspergillus nidulans/genética , Transporte Biológico , Exocitose , Proteínas Fúngicas/genética , Hifas/enzimologia , Hifas/ultraestrutura , Mutação , Fenótipo , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esporos Fúngicos/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA