Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 16(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38337727

RESUMO

Panax ginseng, a traditional Chinese medicine with a history spanning thousands of years, faces overexploitation and challenges related to extended growth periods. Tissue-cultured adventitious roots and stem cells are alternatives to wild and field-cultivated ginseng. In this study, we assessed the in vitro xanthine oxidase and α-glucosidase inhibitory activities of saponin extracts among cultured cambial meristematic cells (CMC), adventitious ginseng roots (AGR), and field-cultivated ginseng roots (CGR). The xanthine oxidase (XO) and α-glucosidase inhibitory activities were determined by uric acid estimation and the p-NPG method, respectively. Spectrophotometry and the Folin-Ciocalteu, aluminum nitrate, and Bradford methods were employed to ascertain the total saponins and phenolic, flavonoid, and protein contents. The calculated IC50 values for total saponin extracts against XO and α-glucosidase were 0.665, 0.844, and >1.6 mg/mL and 0.332, 0.745, and 0.042 mg/mL for AGR, CMC, CGR, respectively. Comparing the total saponin, crude protein, and total phenolic contents revealed that AGR > CMC > CGR. To the best of our knowledge, this study presents the first report on the in vitro comparison of xanthine oxidase and α-glucosidase inhibitory activities among AGR, CMC, and CGR. The findings offer valuable insights into the development of hypoglycemic and antihyperuricemic medicinal, nutraceutical, and functional products utilizing AGR and CMC.


Assuntos
Panax , Saponinas , Panax/metabolismo , Xantina Oxidase/metabolismo , alfa-Glucosidases/metabolismo , Raízes de Plantas/metabolismo
2.
Nutrients ; 15(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068736

RESUMO

BACKGROUND: Common ginsenosides can be transformed into rare ginsenosides through microbial fermentation, and some rare ginsenosides can prevent Alzheimer's disease (AD). This study aimed to transform common ginsenosides into rare ginsenosides through solid-state fermentation of American ginseng stems and leaves (AGSL) by an endophytic fungus and to explore whether fermented saponin extracts prevent AD. METHODS: The powders of AGSL were fermented in a solid state by endophytic fungus. Total saponins were extracted from fermentation products using the methanol extraction method. The types of saponins were analyzed by liquid chromatography mass spectrometry (LC/MS). The Aß42 concentration and ß-secretase activity were measured by ELISA for the prevention of AD. RESULTS: After AGSL was fermented by an endophytic fungus NSJG, the total saponin concentration of the fermented extract G-SL was higher than the unfermented CK-SL. Rare ginsenoside Rh1 was newly produced and the yield of compound K (561.79%), Rh2 (77.48%), and F2 (40.89%) was increased in G-SL. G-SL had a higher inhibition rate on Aß42 concentration (42.75%) and ß-secretase activity (42.22%) than CK-SL, possibly because the rare ginsenoside Rh1, Rh2, F2, and compound K included in it have a strong inhibitory effect on AD. CONCLUSION: The fermented saponin extracts of AGSL show more inhibition effects on AD and may be promising therapeutic drugs or nutrients for AD.


Assuntos
Doença de Alzheimer , Ginsenosídeos , Panax , Saponinas , Humanos , Ginsenosídeos/análise , Doença de Alzheimer/prevenção & controle , Secretases da Proteína Precursora do Amiloide/metabolismo , Biotransformação , Panax/química , Fungos
3.
Microbiologyopen ; 5(6): 1038-1049, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27440453

RESUMO

Algae have long been used to augment plant productivity through their beneficial effects. Alginate oligosaccharide is believed to be one of the important components to enhance growth and crop yield. In this study, we isolated and characterized a Bacillus litoralis strain, named Bacillus M3, from decayed kelps. We further demonstrated that the M3 strain could secrete alginate lyase to degrade alginate. The crude enzyme exhibited the highest activity (33.74 U/mg) at pH 7.0 and 50°C. The M3 strain was also able to ferment the brown alga Sargassum horneri. Fermentation results revealed that a fermentation period of 8-12 hr was the best harvest time with the highest level of alginate oligosaccharides. Plant growth assay showed that the seaweed fermentation extract had an obvious promotion effect on root and seedling growth of Lycopersicon eseulentum L. Our results suggest that fermentation extract of Sargassum horneri by the novel strain of Bacillus litoralis M3 has significant development potential for biofertilizer production and agriculture application.


Assuntos
Bacillus/metabolismo , Fertilizantes/análise , Sargassum/metabolismo , Alga Marinha/metabolismo , Solanaceae/crescimento & desenvolvimento , Alginatos/metabolismo , Bacillus/classificação , Bacillus/isolamento & purificação , Reatores Biológicos/microbiologia , Fermentação , Fertilizantes/microbiologia , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Extratos Vegetais/metabolismo , Sargassum/microbiologia , Alga Marinha/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA