Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 20, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627574

RESUMO

Although the interaction between P and Zn has long been recognized in plants, the physiological and molecular mechanisms underlying P and Zn interactions are poorly understood. We show here that P supply decreases the Zn concentration in maize shoots and roots. Compared to +P + Zn (addition of both P and Zn), +P-Zn reduced and -P-Zn increased the total length of 1° lateral roots (LRs). Under +P + Zn, both P and Zn concentrations were lower in the sl1 mutant roots than in wild-type (WT) maize roots, and P accumulation did not reduce the Zn concentration in ll1 mutant roots. Transcriptome profiling showed that the auxin signaling pathway contributed to P-mediated Zn homeostasis in maize. Auxin production and distribution were altered by changes in P and Zn supply. Cytosolic Zn co-localized with auxin accumulation under +P + Zn. Exogenous application of 1-NAA and L-Kyn altered the P-mediated root system architecture (RSA) under Zn deficiency. -P-Zn repressed the expression of miR167. Overexpression of ZmMIR167b increased the lengths of 1° LRs and the concentrations of P and Zn in maize. These results indicate that auxin-dependent RSA is important for P-mediated Zn homeostasis in maize.HighlightAuxin-dependent RSA is important for P-mediated Zn homeostasis in maize.


Assuntos
Fósforo , Zea mays , Fósforo/metabolismo , Zea mays/metabolismo , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Homeostase , Zinco/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA