Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 106(7): 2619-2636, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35291023

RESUMO

Perylenequinones (PQ) are natural polyketides used as anti-microbial, -cancers, and -viral photodynamic therapy agents. Herein, the effects of L-arginine (Arg) on PQ biosynthesis of Shiraia sp. Slf14(w) and the underlying molecular mechanism were investigated. The total content of PQ reached 817.64 ± 72.53 mg/L under optimal conditions of Arg addition, indicating a 30.52-fold improvement over controls. Comparative transcriptome analysis demonstrated that Arg supplement promoted PQ precursors biosynthesis of Slf14(w) by upregulating the expression of critical genes associated with the glycolysis pathway, and acetyl-CoA and malonyl-CoA synthesis. By downregulating the expression of genes related to the glyoxylate cycle pathway and succinate dehydrogenase, more acetyl-CoA flow into the formation of PQ. Arg supplement upregulated the putative biosynthetic gene clusters for PQ and activated the transporter proteins (MFS and ABC) for exudation of PQ. Further studies showed that Arg increased the gene transcription levels of nitric oxide synthase (NOS) and nitrate reductase (NR), and activated NOS and NR, thus promoting the formation of nitric oxide (NO). A supplement of NO donor sodium nitroprusside (SNP) also confirmed that NO triggered promoted biosynthesis and efflux of PQ. PQ production stimulated by Arg or/and SNP can be significantly inhibited upon the addition of NO scavenger carboxy-PTIO, NOS inhibitor Nω-nitro-L-arginine, or soluble guanylate cyclase inhibitor NS-2028. These results showed that Arg-derived NO, as a signaling molecule, is involved in the biosynthesis and regulation of PQ in Slf14(W) through the NO-cGMP-PKG signaling pathway. Our results provide a valuable strategy for large-scale PQ production and contribute to further understanding of NO signaling in the fungal metabolite biosynthesis. KEY POINTS: • PQ production of Shiraia sp. Slf14(w) was significantly improved by L-arginine addition. • Arginine-derived NO was firstly reported to be involved in the biosynthesis and regulation of PQ. • The NO-cGMP-PKG signaling pathway was proposed for the first time to participate in PQ biosynthesis.


Assuntos
Ascomicetos , Acetilcoenzima A/metabolismo , Arginina/metabolismo , Ascomicetos/metabolismo , GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Nitroprussiato , Perileno/análogos & derivados , Quinonas , Transdução de Sinais
2.
Biotechnol Biofuels ; 12: 203, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31485269

RESUMO

BACKGROUND: Compared to the oleaginous yeast Yarrowia lipolytica, Trichosporon cutaneum can metabolize pentose sugars more efficiently, and in the meantime is more tolerant to inhibitors, which is suitable for lipid production from lignocellulosic biomass. However, this species experiences dimorphic transition between yeast-form cells and hyphae during submerged fermentation, which consequently affects the rheology and mass transfer performance of the fermentation broth and its lipid production. RESULTS: The strain T. cutaneum B3 was cultured with medium composed of yeast extract, glucose and basic minerals. The experimental results indicated that yeast-form morphology was developed when yeast extract was supplemented at 1 g/L, but hyphae were observed when yeast extract supplementation was increased to 3 g/L and 5 g/L, respectively. We speculated that difference in nitrogen supply to the medium might be a major reason for the dimorphic transition, which was confirmed by the culture with media supplemented with yeast extract at 1 g/L and urea at 0.5 g/L and 1.0 g/L to maintain total nitrogen at same levels as that detected in the media with yeast extract supplemented at 3 g/L and 5 g/L. The morphological change of T. cutaneum B3 affected not only the content of intracellular lipids but also their composition, due to its impact on the rheology and oxygen mass transfer performance of the fermentation broth, and more lipids with less polyunsaturated fatty acids such as linoleic acid (C18:2) were produced by the yeast-form cells. When T. cutaneum B3 was cultured at an aeration rate of 1.5 vvm for 72 h with the medium composed of 60 g/L glucose, 3 g/L yeast extract and basic minerals, 27.1 g (dry cell weight)/L biomass was accumulated with the lipid content of 46.2%, and lipid productivity and yield were calculated to be 0.174 g/L/h and 0.21 g/g, respectively. Comparative transcriptomics analysis identified differently expressed genes for sugar metabolism and lipid synthesis as well as signal transduction for the dimorphic transition of T. cutaneum B3. CONCLUSIONS: Assimilable nitrogen was validated as one of the major reasons for the dimorphic transition between yeast-form morphology and hyphae with T. cutaneum, and the yeast-form morphology was more suitable for lipid production at high content with less polyunsaturated fatty acids as feedstock for biodiesel production.

3.
J Microbiol ; 56(11): 805-812, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30353466

RESUMO

A new type III polyketide synthase gene (Ssars) was discovered from the genome of Shiraia sp. Slf14, an endophytic fungal strain from Huperzia serrata. The intron-free gene was cloned from the cDNA and ligated to two expression vectors pET28a and YEpADH2p-URA3 for expression in Escherichia coli BL21(DE3) and Saccharomyces cerevisiae BJ5464, respectively. SsARS was efficiently expressed in E. coli BL21(DE3), leading to the synthesis of a series of polyketide products. Six major products were isolated from the engineered E. coli and characterized as 1,3-dihydroxyphenyl-5-undecane, 1,3-dihydroxyphenyl-5-cis-6'-tridecene,1,3-dihydroxyphenyl-5-tridecane, 1,3-dihydroxyphenyl-5-cis-8'-pentadecene, 1,3-dihydroxyphenyl-5-pentadecane, and 1,3-dihydroxyphenyl-5-cis-10'-heptadecene, respectively, based on the spectral data and biosynthetic origin. Expression of SsARS in the yeast also led to the synthesis of the same polyketide products, indicating that this enzyme can be reconstituted in both heterologous hosts. Supplementation of soybean oil into the culture of E. coli BL21(DE3)/SsARS increased the production titers of 1-6 and led to the synthesis of an additional product, which was identified as 5-(8'Z,11'Z-heptadecadienyl) resorcinol. This work thus allowed the identification of SsARS as a 5-alk(en)ylresorcinol synthase with flexible substrate specificity toward endogenous and exogenous fatty acids. Desired resorcinol derivatives may be synthesized by supplying corresponding fatty acids into the culture medium.


Assuntos
Aciltransferases/química , Aciltransferases/genética , Aciltransferases/isolamento & purificação , Ascomicetos/enzimologia , Ascomicetos/genética , Aciltransferases/biossíntese , Meios de Cultura , DNA Complementar , Escherichia coli/genética , Ácidos Graxos/metabolismo , Fermentação , Regulação da Expressão Gênica , Vetores Genéticos , Huperzia/microbiologia , Filogenia , Resorcinóis/metabolismo , Saccharomyces cerevisiae/genética , Óleo de Soja/metabolismo , Especificidade por Substrato
4.
Appl Microbiol Biotechnol ; 102(1): 153-163, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29098415

RESUMO

Perylenequinones (PQ) that notably produce reactive oxygen species upon exposure to visible light are a class of photoactivated polyketide mycotoxins produced by fungal plant pathogens such as Shiraia sp. The involvement of Ca2+/calmodulin (CaM) signalling in PQ biosynthesis was investigated by submerged culturing of Shiraia sp. Slf14, a species that produces hypocrellins HA and HB and elsinochromes EA, EB, and EC. Our results showed that the total content of PQ reached 1894.66 ± 21.93 mg/L under optimal conditions of Ca2+ addition, which represents a 5.8-fold improvement over controls. The addition of pharmacological Ca2+ sensor inhibitors strongly inhibited PQ production, which indicates that Ca2+/CaM signalling regulates PQ biosynthesis. The expression levels of Ca2+ sensor and PQ biosynthetic genes were downregulated following addition of inhibitors but were upregulated upon addition of Ca2+. Inhibition was partially released by external Ca2+ supplementation. Fluo-3/AM experiments revealed that similar cytosolic Ca2+ variation occurred under these conditions. These results demonstrated that Ca2+ signalling via the CaM transduction pathway plays a pivotal role in PQ biosynthesis.


Assuntos
Ascomicetos/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Perileno/análogos & derivados , Quinonas/metabolismo , Transdução de Sinais , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Vias Biossintéticas/genética , Cálcio/farmacologia , Citosol/química , Citosol/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Perileno/análise , Perileno/metabolismo , Fenol , Quinonas/análise , Espécies Reativas de Oxigênio
5.
Zhongguo Zhong Yao Za Zhi ; 36(6): 734-40, 2011 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-21710741

RESUMO

A total of 127 strains of endophytic fungi were isolated from roots, branches and leaves of Huperzia serrata. These strains were identified into 19 genera based on morphological characters and ribosomal DNA (rDNA) sequence analysis, there into Penicillium, Aspergillus and Podospora were dominant populations in H. serrata. From analysis results we found some endophytic fungi showed a certain degree of tissue preference. The isolation rate and colonization rate of stems were both larger than those of leaf and roots. After testing the acetylcholinesterase (AChE) inhibitory activity of these endophytic fungi, a total of 39 endophytic fungi belonging to 15 genera showed AChE inhibition. Eleven endophytic fungi showed potent AChE inhibition, 7 of which were isolated from leaf. The research not only provided theoretical basis for developing and utilizing the resources of endophytic fungi in H. serrata but also showed a new path for searching medicines resource which has AChE inhibitory activity.


Assuntos
Inibidores da Colinesterase/farmacologia , Fungos/isolamento & purificação , Huperzia/microbiologia , Fungos/classificação
6.
Zhongguo Zhong Yao Za Zhi ; 36(22): 3149-54, 2011 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-22375397

RESUMO

The chemical composition of essential oil, which from the leaves of Chimonanthus grammatus obtained by hydrodistillation were analyzed by GC-MS, and their possible antibacterial properties were screened. According to the results from GC-MS analysis, fifty-three components comprising 99.99% of the essential oil were identified. The major components of essential oil were 3-(4, 8-dimethyl-3,7-nonadienyl)(E) -furan (13.1%), bornyl acetate (12.66%), and 6,6-dimethyl-3-methylene-bicyclo[3.1.1] heptane (7.06%), etc. Antibacterial activity of essential oil was employed by two complementary test systems of disc diffusion and MIC/ MBC tests, which showed obviously antibacterial activity against all of the tested bacteria.


Assuntos
Antibacterianos/farmacologia , Calycanthaceae/química , Óleos Voláteis/análise , Óleos Voláteis/farmacologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Folhas de Planta/química
7.
Zhongguo Zhong Yao Za Zhi ; 34(13): 1636-9, 2009 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-19873769

RESUMO

OBJECTIVE: To analyze and compare the cell growth and accumulation of flavonoids and chlorogenic acid in the callus and suspension cell of Eucommia ulmoides. METHOD: The callus induced from the leaf of E. ulmoides seedlings were suspended in liquid medium. The time courses of cell growth and yields of flavonoids and chlorogenic acid were studied. RESULT: The highest contents of flavonoids and chlorogenic acid in the callus were 13.46, 1.712 mg x g(-1), respectively, while the contents of these two secondary metabolites were 16.63, 3.93 mg x g(-1) in suspension cell culture correspondingly. CONCLUSION: Comparing with callus, the suspension cell showed a short growth period and high growth rate with a remarkable high content of flavonoids and chlorogenic acid.


Assuntos
Ácido Clorogênico/metabolismo , Eucommiaceae/metabolismo , Flavonoides/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Ácido Clorogênico/análise , Eucommiaceae/química , Flavonoides/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA