RESUMO
Diabetic nephropathy (DN) is the main cause of end-stage renal disease worldwide and a major public issue affecting the health of people. Therefore, it is essential to explore effective drugs for the treatment of DN. In this study, the traditional Chinese medicine (TCM) formula, Zhijun Tangshen Decoction (ZJTSD), a prescription modified from the classical formula Didang Decoction, has been used in the clinical treatment of DN. However, the chemical basis underlying the therapeutic effects of ZJTSD in treating DN remains unknown. In this study, compounds of ZJTSD and serum after oral administration in rats were identified and analyzed using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS). Meanwhile, a semi-quantitative approach was used to analyze the dynamic changes in the compounds of ZJTSD in vivo. UPLC-Q/TOF-MS analysis identified 190 compounds from ZJTSD, including flavonoids, anthraquinones, terpenoids, phenylpropanoids, alkaloids, and other categories. A total of 156 xenobiotics and metabolites, i.e., 51 prototype compounds and 105 metabolites, were identified from the compounds absorbed into the blood of rats treated with ZJTSD. The results further showed that 23 substances with high relative content, long retention time, and favorable pharmacokinetic characteristics in vivo deserved further investigations and validations of bioactivities. In conclusion, this study revealed the chemical basis underlying the complexity of ZJTSD and investigated the metabolite profiling and pharmacokinetics of ZJTSD-related xenobiotics in rats, thus providing a foundation for further investigation into the pharmacodynamic substance basis and metabolic regulations of ZJTSD.
RESUMO
BACKGROUND AND AIM: Huashi Baidu Decoction (HSBD) is a novel complex prescription which has positive effects on severe COVID-19. This study was aimed to discover key Chinese materia medica, main active compounds, hub therapeutic target proteins and core signal pathways in the potential therapeutic mechanism of HSBD on severe COVID-19 through integrating network pharmacological methods. EXPERIMENTAL PROCEDURE: TCMSP, TCMID and STITCH databases were used to screen out active compounds and target proteins of HSBD. GeneCards database was used to screen out disease genes of severe COVID-19. The potential therapeutic targets of HSBD on severe COVID-19 were used to construct protein-protein interaction network through STRING database and the hub target proteins were discovered. Next, GO and KEGG enrichment analysis were carried out to discover core signal pathways. Finally, the network diagram of "Chinese materia medica-active compounds-therapeutic target proteins" was built, then key Chinese materia medica and main active compounds were selected. RESULTS AND CONCLUSION: HSBD might treat severe COVID-19 through 45 potential target genes, among them, there were 13 hub target genes: RELA, TNF, IL6, IL1B, MAPK14, TP53, CXCL8, MAPK3, MAPK1, IL4, MAPK8, CASP8, STAT1. Meanswhile, GO_BiologicalProcess and KEGG signaling pathways analysis results showed that the core signal pathways were inflammation and immune regulation pathways. Finally, 4 key Chinese materia medica and 11 main active compounds were discovered in the HSBD. In conclusion, the therapeutic mechanism of HSBD on severe COVID-19 might involve its pharmacological effects of anti-inflammation and immune regulation via acting on 45 disease-related proteins of severe COVID-19. TAXONOMY CLASSIFICATION BY EVISE: Viral Pneumonia, COVID-19, Acute Respiratory Distress Syndrome, Septic Shock, Chinese Herbal Medicine.
RESUMO
BACKGROUND: Alcoholic fatty liver disease (AFLD) is the first stage of the alcoholic liver disease course. Yin-Chen-Hao-Tang (YCHT) has a good clinical effect on the treatment of AFLD, but its molecular mechanism has not been elucidated. In this study, we tried to explore the molecular mechanism of YCHT in improving hepatocyte steatosis in AFLD mice through network pharmacology and RNA sequencing (RNA-Seq) transcriptomics. METHODS: Network pharmacological methods were used to analyze the potential therapeutic signaling pathways and targets of YCHT on AFLD. Then, the AFLD mice model was induced and YCHT was administered concurrently. Liver injury was measured by serum alanine aminotransferase (ALT) activity and liver tissue H&E staining, and liver steatosis was determined by serum triglyceride (TG) level and liver tissue Oil Red staining. The molecular mechanism of YCHT on prevention and treatment of mice AFLD was investigated according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the differential expression genes data obtained by liver tissue RNA-Seq. Finally, ethanol-induced AFLD AML12 hepatocyte model was established, YCHT with or without PPARα agonist pemafibrate or PPARγ inhibitor GW9662 was administered, Nile Red fluorescent staining was used to evaluate steatosis levels in AML12 hepatocytes, and qRT-PCR was used to detect PPARα and PPARγ gene expression. RESULTS: The results of network pharmacology analysis showed that YCHT may exert its pharmacological effect on AFLD through 312 potential targets which are involved in many signaling pathways including the PPAR signaling pathway. AFLD mice experiments results showed that YCHT markedly decreased mice serum ALT activity and serum TG levels. YCHT also significantly improved alcohol-induced hepatic injury and steatosis in mice livers. Furthermore, KEGG pathway enrichment results of RNA-Seq showed that the PPAR signaling pathway should be the most relevant pathway of YCHT in the prevention and treatment of AFLD. AFLD hepatocyte model experiment results showed that YCHT could remarkably reduce hepatocyte steatosis through reducing PPARγ expression and increasing PPARα expression. CONCLUSIONS: Our study discovered that PPARγ and PPARα are the key targets and the PPAR signaling pathway is the main signaling pathway for YCHT to prevent and treat AFLD.
RESUMO
BACKGROUND: China is the second highest pulmonary tuberculosis (PTB) burden country worldwide. However, retreatment of PTB has often developed resistance to at least one of the four first-line anti-TB drugs. The cure rate (approximately 50.0-73.3%) and management of retreatment of PTB in China needs to be improved. Qinbudan decoction has been widely used to treat PTB in China since the 1960s. Previously clinical studies have shown that the Qinbudan tablet (QBDT) promoted sputum-culture negative conversion and lesion absorption. However, powerful evidence from a randomized controlled clinical trial is lacking. Therefore, the aim of this study was to compare the efficacy and safety of QBDT as an adjunct therapy for retreatment of PTB. METHODS: We conducted a multicenter, randomized, double-blind, placebo-controlled clinical trial in China. People diagnosed with PTB were enrolled who received previous anti-TB treatment from April 2011 to March 2013. The treatment group received an anti-TB regimen and QBDT, and the control group was administered an anti-TB regimen plus placebo. Anti-TB treatment options included isoniazid, rifampicin, pyrazinamide, ethambutol, streptomycin for 2 months (2HRZES), followed by isoniazid, rifampicin, ethambutol for 6 months (6HRE), daily for 8 months. Primary outcome was sputum-culture conversion using the MGIT 960 liquid medium method. Secondary outcomes included lung lesion absorption and cavity closure. Adverse events and reactions were observed after treatment. A structured questionnaire was used to record demographic information and clinical symptoms of all subjects. Data analysis was performed by SPSS 25.0 software in the full analysis set (FAS) population. RESULTS: One hundred eighty-one cases of retreatment PTB were randomly divided into two groups: the placebo group (88 cases) and the QBDT group (93 cases). A total of 166 patients completed the trial and 15 patients lost to follow-up. The culture conversion rate of the QBDT group and placebo group did not show a noticeable improvement by using the covariate sites to correct the rate differences (79.6% vs 69.3%; rate difference = 0.10, 95% confidence interval (CI): - 0.02-0.23; F = 2.48, P = 0.12) after treatment. A significant 16.6% increase in lesion absorption was observed in the QBDT group when compared with the placebo group (67.7% vs 51.1%; rate difference = 0.17, 95% CI: 0.02-0.31; χ2 = 5.56, P = 0.02). The intervention and placebo group did not differ in terms of cavity closure (25.5% vs 21.1%; rate difference = 0.04, 95% CI: - 0.21-0.12; χ2 = 0.27, P = 0.60). Two patients who received chemotherapy and combined QBDT reported pruritus/nausea and vomiting. CONCLUSIONS: No significant improvement in culture conversion was observed for retreatment PTB with traditional Chinese medicine plus standard anti-TB regimen. However, QBDT as an adjunct therapy significantly promoted lesion absorption, thereby reducing lung injury due to Mycobacterium tuberculosis infection. TRIAL REGISTRATION: This trial is registered at ClinicalTrials.gov, NCT02313610.
Assuntos
Antituberculosos/uso terapêutico , Medicina Tradicional Chinesa/estatística & dados numéricos , Tuberculose Pulmonar/tratamento farmacológico , Adulto , Antituberculosos/efeitos adversos , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Retratamento/estatística & dados numéricos , Comprimidos , Tuberculose Pulmonar/patologia , Adulto JovemRESUMO
PURPOSE: Pulmonary fibrosis (PF) is a common clinical disease, which results in serious respiratory impairment. Xin Jia Xuan Bai Cheng Qi Decoction (XJXBCQ) is a traditional prescription commonly used in treating lung diseases. We investigate the effect of XJXBCQ against PF and its mechanism via the regulation of TGF-ß1/Smad in vitro and in vivo. MATERIALS AND METHODS: XJXBCQ was first extracted and probed for chemical characterization. An PF model in vitro and in vivo was established in rats and in MRC-5 cells. In bleomycin (BLM)-induced rats model, lung function such as peak expiratory flow (PEF), minute ventilation (MV) and hydroxyproline (HYP) were measured; histopathological changes of lung tissue and TGF-ß1 in peripheral blood of rats were detected. TGF-ß receptor, Smad2 and its phosphorylation expression were tested by Western blot assay in rats model. Then the effects of XJXBCQ on TGF-ß1/Smad signal pathway were assessed by Western blot analysis in vitro, and IL-17A and IL-25 levels were evaluated by ELISA in vivo. RESULTS: Our results showed that XJXBCQ significantly enhanced the lung functions, such as PEF, MV and HYP, by reducing the expression level of lung inflammatory cytokine and the content and fibrosis of lung collagen. Moreover, XJXBCQ effectively inhibited TGF-ß1, Smad2 and its phosphorylation expression, and the activation of Smad7 in vitro and in vivo. Furthermore, XJXBCQ had an inhibitory effect on the α-smooth muscle actin (α-SMA) and fibronectin (Fn) in vitro and downregulated IL-17A and IL-25 by inhibiting the activation of TGF-ß1/Smad signaling pathway in vitro and in vivo. Further, XJXBCQ effectively inhibitied ventilation volume and peak expiratory content remodeling and hydroxyproline content through inhibition of TGF-ßRâ ¡, Smad2 and its phosphorylation expression, and activation of Smad7 in vivo. CONCLUSION: XJXBCQ extract had an anti-PF effect in vitro and in vivo, which could be attributed to the inhibition of the expression of p-Smad2 and increase in the expression of Smad7 by regulating the TGF-ß1/Smad activity.
Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Extratos Vegetais/farmacologia , Fibrose Pulmonar/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Fibrose Pulmonar/fisiopatologia , Ratos , Ratos Wistar , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad7/metabolismoRESUMO
Hypothalamic neurons expressing the anorectic peptide Pro-opiomelanocortin (Pomc) regulate food intake and body weight. Here, we show that Steroid Receptor Coactivator-1 (SRC-1) interacts with a target of leptin receptor activation, phosphorylated STAT3, to potentiate Pomc transcription. Deletion of SRC-1 in Pomc neurons in mice attenuates their depolarization by leptin, decreases Pomc expression and increases food intake leading to high-fat diet-induced obesity. In humans, fifteen rare heterozygous variants in SRC-1 found in severely obese individuals impair leptin-mediated Pomc reporter activity in cells, whilst four variants found in non-obese controls do not. In a knock-in mouse model of a loss of function human variant (SRC-1L1376P), leptin-induced depolarization of Pomc neurons and Pomc expression are significantly reduced, and food intake and body weight are increased. In summary, we demonstrate that SRC-1 modulates the function of hypothalamic Pomc neurons, and suggest that targeting SRC-1 may represent a useful therapeutic strategy for weight loss.
Assuntos
Hipotálamo/metabolismo , Neurônios/metabolismo , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Obesidade/genética , Alelos , Animais , Peso Corporal , Linhagem Celular Tumoral , Cruzamentos Genéticos , Deleção de Genes , Técnicas de Introdução de Genes , Variação Genética , Células HEK293 , Heterozigoto , Homeostase , Humanos , Leptina/metabolismo , Masculino , Potenciais da Membrana , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Obesidade/metabolismo , FenótipoRESUMO
Sexual dimorphism exists in energy balance, but the underlying mechanisms remain unclear. Here we show that the female mice have more pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of hypothalamus than males, and female POMC neurons display higher neural activities, compared to male counterparts. Strikingly, deletion of the transcription factor, TAp63, in POMC neurons confers "male-like" diet-induced obesity (DIO) in female mice associated with decreased POMC neural activities; but the same deletion does not affect male mice. Our results indicate that TAp63 in female POMC neurons contributes to the enhanced POMC neuron functions and resistance to obesity in females. Thus, TAp63 in POMC neurons is one key molecular driver for the sexual dimorphism in energy homeostasis.
Assuntos
Neurônios/metabolismo , Fosfoproteínas/fisiologia , Pró-Opiomelanocortina/metabolismo , Caracteres Sexuais , Transativadores/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal , Metabolismo Energético/fisiologia , Estrogênios/metabolismo , Feminino , Homeostase , Hipotálamo/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Receptores para Leptina/metabolismo , Fatores SexuaisRESUMO
AIM: To investigate the capability of salvianolic acid B (Sal B) to protect hepatocytes from hydrogen peroxide (H2O2)/carbon tetrachloride (CCl4)-induced lysosomal membrane permeabilization. METHODS: Cell Counting Kit-8 assay was used to measure cell viability. Apoptosis and death were assayed through flow cytometry. BrdU incorporation was used to detect cell proliferation. Serum alanine aminotransferase activity and liver malondialdehyde (MDA) content were measured. Liver histopathological changes were evaluated using hematoxylin-eosin staining. Lysosomal membrane permeability was detected with LysoTracker Green-labeled probes and acridine orange staining. The levels of protein carbonyl content (PCC), cathepsins (Cat)B/D, and lysosome-associated membrane protein 1 (LAMP1) were evaluated through western blotting. Cytosol CatB activity analysis was performed with chemiluminescence detection. The mRNA level of LAMP1 was evaluated through quantitative real-time polymerase chain reaction. RESULTS: Results indicated that H2O2 induced cell injury/death. Sal B attenuated H2O2-induced cell apoptosis and death, restored the inhibition of proliferation, decreased the amount of PCC, and stabilized the lysosome membrane by increasing the LAMP1 protein level and antagonizing CatB/D leakage into the cytosol. CCl4 also triggered hepatocyte death. Furthermore, Sal B effectively rescued hepatocytes by increasing LAMP1 expression and by reducing lysosomal enzyme translocation to the cytosol. CONCLUSION: Sal B protected mouse embryonic hepatocytes from H2O2/CCl4-induced injury/death by stabilizing the lysosomal membrane.
Assuntos
Benzofuranos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Membranas Intracelulares/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Alanina Transaminase/sangue , Animais , Apoptose/efeitos dos fármacos , Benzofuranos/uso terapêutico , Western Blotting , Tetracloreto de Carbono/toxicidade , Catepsina A/metabolismo , Catepsina B/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citosol/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Citometria de Fluxo , Hepatócitos , Humanos , Peróxido de Hidrogênio/toxicidade , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Carbonilação Proteica/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Salvia miltiorrhiza/química , Transdução de SinaisRESUMO
OBJECTIVE: To determine differences in adherence to secondary prevention guidelines (pharmacological interventions) among coronary heart disease (CHD) patients between a Chinese medicine (CM) hospital and a general hospital in a Chinese city. METHODS: Medical records of 200 patients consecutively discharged from the CM hospital and the general hospital for CHD were reviewed to determine the proportions of eligible patients who received antiplatelet agents, ß-blockers, angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs) and statins at discharge. The effects of patient characteristics and hospital type on the use of these medicines were estimated using logistic regression models. RESULTS: Patients discharged from the CM hospitals were older; more likely females; had greater history of hyperlipidemia, cerebrovascular diseases and less smoker (P<0.01 or P<0.05). They were less likely to receive coronary angiography and percutaneous coronary intervention, and had a longer length of stay than those discharged from the general hospital (P<0.01 or P<0.05). There were no significant differences in antiplatelet agents (96% vs. 100%, P=0.121) or statins (97.9% vs. 100%, P=0.149) use between the CM hospital and the general hospital. In multivariable analyses that adjusted for patient characteristics and hospital type, there was no significant difference in use of ß-blockers between the CM hospital and the general hospital. In contrast, patients discharged from the CM hospital were less likely to receive ACE inhibitors/ARBs compared with those discharged from the general hospital (odds ratio: 0.3, 95% confidence interval: 0.105-0.854). CONCLUSION: In this study, the CM hospital provides the same quality of care in CHD for prescribing evidence-based medications at discharge compared with another general hospital except for ACE inhibitors/ARBs use.
Assuntos
Doença das Coronárias/prevenção & controle , Medicina Baseada em Evidências , Hospitais Gerais , Medicina Tradicional Chinesa , Prevenção Secundária , Idoso , Doença das Coronárias/tratamento farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Mycelia of cultured Cordyceps sinensis (CS) is one of the most common substitutes for natural CS and was approved for arrhythmia in China. However, the role of CS in ameliorating injury during ischemia-reperfusion (I/R) is still unclear. We examined effects of extracts from CS on I/R and investigated the possible mechanisms. Post-ischemic coronary perfusion pressure, ventricular function, and coronary flow were measured using the Langendorff mouse heart model. Oxidative stress of cardiac homogenates was performed using an ELISA. Our results indicate that CS affords cardioprotection possibly through enhanced adenosine receptor activation. Cardioprotection was demonstrated by reduced post-ischemic diastolic dysfunction and improved recovery of pressure development and coronary flow. Treatment with CS largely abrogates oxidative stress and damage in glucose- or pyruvate-perfused hearts. Importantly, observed reductions in oxidative stress [glutathione disulfide (GSSG)]/[GSSG + glutathione] and [malondialdehyde (MDA)]/[superoxide dismutase + MDA] ratios as well as the resultant damage upon CS treatment correlate with functional markers of post-ischemic myocardial outcome. These effects of CS were partially blocked by 8-ρ-sulfophenyltheophylline, an adenosine receptor antagonist. Our results demonstrate a suppressive role of CS in ischemic contracture. Meanwhile, the results also suggest pre-ischemic adenosine receptor activation may be involved in reducing contracture in hearts pretreated with CS.
Assuntos
Antioxidantes/farmacologia , Cordyceps/química , Coração/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptores Purinérgicos P1/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Cardiotônicos/farmacologia , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Coração/fisiopatologia , Técnicas In Vitro , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Micélio/química , Miocárdio/metabolismo , Oxirredução , Superóxido Dismutase/metabolismo , Teofilina/análogos & derivados , Teofilina/farmacologiaRESUMO
Estrogen receptor-α (ERα) expressed by hypothalamic proopiomelanocortin and steroidogenic factor-1 neurons largely mediates the antiobesity effects of estrogens in females. However, the critical molecular events that are coupled to ERα and mediate estrogenic effects on energy balance remain unknown. In the current study, we demonstrated that steroid receptor coactivator-1 (SRC1), a nuclear receptor coactivator, is abundantly expressed by both proopiomelanocortin and steroidogenic factor-1 neurons. We further showed that central administration of an ERα agonist, propyl pyrazole triol, acutely increases physical interaction between SRC1 and ERα in the hypothalamus. Finally, we demonstrated that the effects of estrogens on energy homeostasis are significantly blunted in female mice lacking SRC1 globally. Collectively our results indicate that SRC1 is functionally required to mediate the antiobesity effects of estrogen-ERα signals.
Assuntos
Estrogênios/farmacologia , Coativador 1 de Receptor Nuclear/metabolismo , Fator Esteroidogênico 1/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/metabolismo , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Camundongos , Coativador 1 de Receptor Nuclear/genética , Fenóis , Pró-Opiomelanocortina/metabolismo , Ligação Proteica/efeitos dos fármacos , Pirazóis/farmacologia , Fator Esteroidogênico 1/genéticaRESUMO
AIM: To investigate the cellular mechanisms of action of Yiguanjian (YGJ) decoction in treatment of chronic hepatic injury. METHODS: One group of mice was irradiated, and received enhanced green fluorescent protein (EGFP)-positive bone marrow transplants followed by 13 wk of CCl4 injection and 6 wk of oral YGJ administration. A second group of Institute for Cancer Research mice was treated with 13 wk of CCl4 injection and 6 wk of oral YGJ administration. Liver function, histological changes in the liver, and Hyp content were analyzed. The expression of α-smooth muscle actin (α-SMA), F4/80, albumin (Alb), EGFP, mitogen-activated protein kinase-2 (PKM2), Ki-67, α fetoprotein (AFP), monocyte chemotaxis protein-1 and CC chemokine receptor 2 were assayed. RESULTS: As hepatic damage progressed, EGFP-positive marrow cells migrated into the liver and were mainly distributed along the fibrous septa. They showed a conspicuous coexpression of EGFP with α-SMA and F4/80 but no coexpression with Alb. Moreover, the expression of PKM2, AFP and Ki-67 was enhanced dynamically and steadily over the course of liver injury. YGJ abrogated the increases in the number of bone marrow-derived fibrogenic cells in the liver, inhibited expression of both progenitor and mature hepatocyte markers, and reduced fibrogenesis. CONCLUSION: YGJ decoction improves liver fibrosis by inhibiting the migration of bone marrow cells into the liver as well as inhibiting their differentiation and suppressing the proliferation of both progenitors and hepatocytes in the injured liver.
Assuntos
Células da Medula Óssea/efeitos dos fármacos , Tetracloreto de Carbono , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Cirrose Hepática Experimental/tratamento farmacológico , Regeneração Hepática/efeitos dos fármacos , Fígado/efeitos dos fármacos , Actinas/metabolismo , Administração Oral , Albuminas/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Biomarcadores/metabolismo , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Movimento Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Quimiocina CCL2/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Antígeno Ki-67/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Receptores CCR2/metabolismo , Fatores de Tempo , alfa-Fetoproteínas/metabolismoRESUMO
AIM OF THE STUDY: To evaluate the effects and the possible mechanism of Cryptoporus polysaccharides (CP) extracted from fruiting body of Cryptoporus volvatus in lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and mice. MATERIALS AND METHODS: Acute lung injury was induced by intratracheally instillation of LPS into lung in either rats or mice, assessing leukocyte numbers and myeloperoxidase activity in bronchoalveolar lavage fluid, as well as evaluating cytokines mRNA and protein expressions, and Toll-like receptor 2 (TLR(2)) and nuclear factor (NF)-κB mRNA levels in the lung tissues of mice. Vascular permeability and edema of lung in mice, and arterial blood gas in rats were also performed. RESULTS: In ALI, CP-treated mice and rats exhibited significantly reduced leukocyte invasion, myeloperoxidase activity, vascular permeability, edema of lung, as well as tumor necrosis factor-α and Interleukin-1ß mRNA and protein expressions in the lung tissues compared with vehicle-treated mice. TLR(2) and NF-κB mRNA levels of the lung tissues were decreased in CP-treated mice in response to LPS. And decline in arterial blood gas was recovered in CP-treated rats. CONCLUSIONS: Our results supported a protective role of CP in ALI and suggested that the reduction of the activation of TLR(2) and NF-κB signal pathway in lung injury may be relavant to the pretreatment of CP.
Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Fungos , Fatores Imunológicos/farmacologia , Pulmão/efeitos dos fármacos , Polissacarídeos/farmacologia , Receptor 2 Toll-Like/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Gasometria , Líquido da Lavagem Broncoalveolar/imunologia , Permeabilidade Capilar/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Carpóforos , Fungos/química , Fatores Imunológicos/isolamento & purificação , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Pulmão/irrigação sanguínea , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/genética , Peroxidase/metabolismo , Polissacarídeos/isolamento & purificação , Edema Pulmonar/imunologia , Edema Pulmonar/prevenção & controle , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
OBJECTIVE: To observe the effects of hippocampal Abeta42 deposition on the expression of inflammatory cytokines and phosphorylated MAPK signal molecules as well as the intervention of AD by total glucosides of paeony (TGP). METHOD: 12 week-old female SD rats were stereotactic injected one-time with a fibrillar Abeta42 positioning hippocampus to replicate AD pathology model and interfered with TGP. The expression of inflammatory cytokines and phosphorylated MAPK pathway signaling molecules were observed by immunohistochemistry (SABC), and SABC images were analyzed by image analysis software. RESULT: Compared with the control group, the IL-1beta, IL-6 and p-p38, p-JNK, p-MEK3/6 positive stained areas of AD pathology model group increased and their staining intensity decreased (the protein expression quantity inversely proportional to the staining intensity), while the IL-1beta, IL-6 and p-p38, p-JNK, p-MEK3/6 positive stained areas of the treatment groups decreased and their staining intensity increased compared with AD pathology model group. CONCLUSION: Abeta42 deposition in hippocampus can induce the brain inflammation and the over-expression of IL-1beta, IL-6 and p-p38, p-JNK, p-MEK3/6. Inhibiting the over-expression of inflammatory cytokines and phosphorylated MAPK signaling molecules may be a major antagonistic mechanism of TGP against AD.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Citocinas/análise , Glucosídeos/farmacologia , Hipocampo/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Paeonia/química , Fragmentos de Peptídeos/toxicidade , Peptídeos beta-Amiloides/metabolismo , Animais , Feminino , Glucosídeos/uso terapêutico , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Airway inflammation plays important roles in the pathogenesis of acute respiratory distress syndrome (ARDS), asthma and chronic obstructive pulmonary disease (COPD), and anti-inflammatory treatment effectively improves the symptoms of these diseases. To develop the potentially therapeutic compounds for the treatment of pulmonary inflammation, we investigated the effects of licorice flavonoids (LF) extracted from the roots of Glycyrrhiza uralensis (licorice) on lipopolysaccharide (LPS)-induced acute pulmonary inflammation in mice. Acute pulmonary inflammation was induced by intracheal instillation with LPS, treatment with LF at dosages of 3, 10 and 30 mg/kg significantly reduced the LPS-induced inflammatory cells, including neutrophils, macrophages and lymphocytes accumulation in bronchoalveolar lavage fluids (BALF), among these inflammatory cells, LF predominately inhibited neutrophil infiltration, and the maximal effect (30 mg/kg) was as comparable as dexamethasone treatment at 1 mg/kg. Consistent with its effects on neutrophil infiltration, LF treatment significantly increased LPS-induced BALF superoxide dismutase activity, and significantly decreased lung myeloperoxidase activity as well. Furthermore, treatment with LF at 30 mg/kg significantly reduced LPS-induced lung TNFalpha and IL-1beta mRNA expression at 6 h and 24 h after LPS instillation, respectively. Finally, LF at different dosages not only significantly decreased the elevation of lung water content, but also markedly attenuated LPS-induced histological alteration. Therefore, we suggest that LF effectively attenuates LPS-induced pulmonary inflammation through inhibition of inflammatory cells infiltration and inflammatory mediator release which subsequently reduces neutrophil recruitment into lung and neutrophil-mediated oxidative injury, and this study provides with the potential rationale for development of anti-inflammatory compounds from flavonoid extracts of licorice.