Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 124: 273-279, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35314331

RESUMO

Propolis is non-hazardous resinous substance mixture containing bioactive ingredients such as polyphenols, flavonoids and organic acid. It has been widely used as food supplement and immune adjuvant due to its benefits in anti-microbial and immunomodulation. Edwardsiella piscicida is a kind of threatening pathogen which could cause high mortality in turbot. However, whether propolis could enhance the innate immune response against E. piscicida infection in turbot remains unknown. In this study, we found dietary propolis addition could improve the expression of anti-oxidative stress related enzymes, e.g., SOD, CAT and GPT, and relieved the histopathological changes of juvenile turbot after E. piscicida infection. Moreover, propolis addition increased the expression of cytokines such as il-1ß, il-6 and tnf-α in different organs of juvenile turbot. Importantly, rescued survival and decreased bacterial loads were observed in propolis feeding group. Taken together, these findings suggest that the important roles of propolis in protecting juvenile turbot from E. piscicida infection, indicating propolis might be applied as a promising immunopotentiator candidate in aquaculture.


Assuntos
Edwardsiella , Infecções por Enterobacteriaceae , Doenças dos Peixes , Linguados , Própole , Animais , Suplementos Nutricionais , Edwardsiella/fisiologia , Imunidade Inata , Própole/farmacologia
2.
Plant Physiol Biochem ; 168: 230-238, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649026

RESUMO

Pectin is one of the major components of plant primary cell wall polysaccharides. The degree of pectin methylesterification (DM) plays an important role in the process of plant growth. However, little is known about the underlying regulatory mechanisms during the process of pectin demethylesterification. Here, we characterized mucilage defect 1 (mud1), a novel Arabidopsis thaliana mutant, which displays increased mucilage adherence resulting from increased activities of pectin methylesterases (PMEs) and decreased degree of pectin methylesterification (DM). MUD1 encodes a nuclear protein with a Really Interesting New Gene (RING)-v domain and is highly expressed in developing seed coat when seed coat mucilage starts to accumulate. We have demonstrated that MUD1 has E3 ubiquitin ligase activity in vitro. The expression of PME-related genes, including MYB52, LUH, SBT1.7, PMEI6, and PMEI14 decreased considerably in mud1. We propose that MUD1 acts as an ubiquitin ligase potentially regulating the DM of pectin by post-transcriptionally removing proteins that normally negatively regulate the level or activity of PMEs in the seed coat mucilage.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mucilagem Vegetal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Mucilagem Vegetal/metabolismo , Sementes/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Plant Cell ; 33(2): 381-403, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33709105

RESUMO

Homogalacturonan (HG), a component of pectin, is synthesized in the Golgi apparatus in its fully methylesterified form. It is then secreted into the apoplast where it is typically de-methylesterified by pectin methylesterases (PME). Secretion and de-esterification are critical for normal pectin function, yet the underlying transcriptional regulation mechanisms remain largely unknown. Here, we uncovered a mechanism that fine-tunes the degree of HG de-methylesterification (DM) in the mucilage that surrounds Arabidopsis thaliana seeds. We demonstrate that the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor (TF) ERF4 is a transcriptional repressor that positively regulates HG DM. ERF4 expression is confined to epidermal cells in the early stages of seed coat development. The adhesiveness of the erf4 mutant mucilage was decreased as a result of an increased DM caused by a decrease in PME activity. Molecular and genetic analyses revealed that ERF4 positively regulates HG DM by suppressing the expression of three PME INHIBITOR genes (PMEIs) and SUBTILISIN-LIKE SERINE PROTEASE 1.7 (SBT1.7). ERF4 shares common targets with the TF MYB52, which also regulates pectin DM. Nevertheless, the erf4-2 myb52 double mutant seeds have a wild-type mucilage phenotype. We provide evidence that ERF4 and MYB52 regulate downstream gene expression in an opposite manner by antagonizing each other's DNA-binding ability through a physical interaction. Together, our findings reveal that pectin DM in the seed coat is fine-tuned by an ERF4-MYB52 transcriptional complex.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Pectinas/metabolismo , Mucilagem Vegetal/metabolismo , Proteínas Repressoras/metabolismo , Sementes/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Adesividade , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Reagentes de Ligações Cruzadas/química , Esterificação , Genes de Plantas , Mutação/genética , Motivos de Nucleotídeos/genética , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Ligação Proteica , Proteínas Repressoras/genética
4.
Gene ; 741: 144522, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32145329

RESUMO

Virus-induced gene silencing (VIGS) is a transient based reverse genetic tool used to elucidate the function of novel gene in N. benthamiana. In current study, 14 UDP-D-glucuronate 4-epimerase (GAE) family members were identified and their gene structure, phylogeny and expression pattern were analyzed. VIGS system was optimized for the functional characterization of NbGAE6 homologous genes in N. benthamiana. Whilst the GAE family is well-known for the interconversion of UDP-D-GlcA and UDP-D-GalA during pectin synthesis. Our results revealed that the downregulation of these genes significantly reduced the amount of GalA in the homogalacturunan which is the major component of pectin found in primary cell wall. Biphenyl assay and high performance liquid chromatography analysis (HPLC) depicted that the level of 'GalA' monosaccharide reduced to 40-51% in VIGS plants as compared to the wild type plants. Moreover, qRT-PCR also confirmed the downregulation of the NbGAE6 mRNA in VIGS plants. In all, this is the first comprehensive study of the optimization of VIGS system for the provision of rapid silencing of GAE family members in N. benthamiana, eliminating the need of stable transformants.


Assuntos
Proteínas de Arabidopsis/genética , Carboidratos Epimerases/genética , Parede Celular/metabolismo , Nicotiana/genética , Pectinas/genética , Arabidopsis/genética , Parede Celular/genética , Parede Celular/virologia , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Vetores Genéticos/genética , Monossacarídeos/metabolismo , Pectinas/biossíntese , Peptídeos , Vírus de Plantas/genética , RNA Mensageiro/genética , Nicotiana/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA