Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Food ; 20(9): 821-829, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28816577

RESUMO

Coenzyme Q10 (CoQ10) is a powerful antioxidant substance synthesized in the body. The current study aimed to determine whether CoQ10 suppresses inflammation and inhibits p-STAT3 expression in an experimental colitis mouse model. The mice were orally fed with CoQ10 once a day for 13 days. Histological analysis of the colons was performed by immunohistochemistry. Expression of IL-17, FOXP3, p53, AMPK, and mTOR and activation of p-STAT3 and p-STAT5 in lymph node and spleen tissues were detected by confocal microscopy of stained tissue sections. The relative mRNA expression was measured with real-time PCR, and protein levels were examined by western blot. CoQ10 reduced the disease activity index score and the colon histological score. It also reduced inflammatory mediators in the colon and increased the colon length. The expression of IL-17 and p-STAT3 was decreased with CoQ10 treatment. In contrast, CoQ10 treatment increased the expression of p-AMPK and FOXP3. Expression of anti-inflammatory cytokines was shown to increase in colitis mice treated with CoQ10. These results suggested that CoQ10 may reduce the severity of colitis and suppress inflammation through the inhibition of p-STAT3 and IL-17. These results support the use of CoQ10 as a potential targeted therapy for the treatment of colitis.


Assuntos
Anti-Inflamatórios/administração & dosagem , Colite/tratamento farmacológico , Colite/imunologia , Interleucina-17/imunologia , Fator de Transcrição STAT3/imunologia , Células Th17/imunologia , Ubiquinona/análogos & derivados , Animais , Colite/genética , Modelos Animais de Doenças , Humanos , Interleucina-17/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/genética , Ubiquinona/administração & dosagem
2.
PLoS One ; 9(2): e86062, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24558360

RESUMO

Epigallocatechin-3-gallate (EGCG) is a green tea polyphenol exerting potent anti-oxidant and anti-inflammatory effects by inhibiting signaling and gene expression. The objective of the study was to evaluate the effect of EGCG on interleukin (IL)-1 receptor antagonist knockout (IL-1RaKO) autoimmune arthritis models. IL-1RaKO arthritis models were injected intraperitoneally with EGCG three times per week after the first immunization. EGCG decreased the arthritis index and showed protective effects against joint destruction in the IL-1RaKO arthritis models. The expression of pro-inflammatory cytokines, oxidative stress proteins, and p-STAT3 (Y705) and p-STAT3 (S727), mTOR and HIF-1α were significantly lower in mice treated with EGCG. EGCG reduced osteoclast markers in vivo and in vitro along with anti-osteoclastic activity was observed in EGCG-treated IL-1RaKO mice. The proportion of Foxp3(+) Treg cells increased in the spleens of mice treated with EGCG, whereas the proportion of Th17 cells reduced. In vitro, p-STAT3 (Y705) and p-STAT3 (S727), HIF1α and glycolytic pathway molecules were decreased by EGCG. EGCG suppressed the activation of mTOR and subsequently HIF-1α, which is considered as a metabolic check point of Th17/Treg differentiation supporting the therapeutic potential of EGCG in autoimmune arthritis.


Assuntos
Antioxidantes/química , Catequina/análogos & derivados , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Th17/imunologia , Animais , Artrite/genética , Artrite/metabolismo , Doenças Autoimunes/genética , Catequina/química , Diferenciação Celular , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Osteoclastos/citologia , Estresse Oxidativo , Receptores de Interleucina-1/metabolismo , Linfócitos T Reguladores/imunologia
3.
PLoS One ; 8(11): e78843, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223854

RESUMO

Grape seed proanthocyanidin extract (GSPE) is a natural flavonoid that exerts anti-inflammatory properties. Obesity is an inflammatory condition and inflammatory cells and their secretion of pro-inflammatory molecules contribute to the pathogenesis of obesity. Rheumatoid arthritis (RA) is a chronic autoimmune disease that is characterized by inflammation of joints lined by synovium. Previously, we demonstrated that obesity augmented arthritis severity in collagen induced arthritis (CIA), a murine model of human RA. Here, we investigated whether oral administration of GSPE showed antiobesity and anti-arthritic effects in high-fat diet-induced obese (DIO) mice and in obese CIA mice, respectively. The pathophysiologic mechanisms by which GSPE attenuates weight gain and arthritis severity in vivo were also investigated. In DIO mice, GSPE administration significantly inhibited weight gain, reduced fat infiltration in liver and improved serum lipid profiles. The antiobesity effect of GSPE was associated with increased populations of regulatory T (Treg) cells and those of decreased Th17 cells. Decrease of Th17 cells was associated with significant inhibition of their key transcriptional factors, pSTAT3(Tyr705) and pSTAT3(Ser727). On the contrary, GSPE-induced Treg induction was associated with enhanced pSTAT5 expression. To identify the anti-arthritis effects of GSPE, GSPE was given orally for 7 weeks after type II collagen immunization. GSPE treatment significantly attenuated the development of autoimmune arthritis in obese CIA model. In line with DIO mice, GSPE administration decreased Th17 cells and reciprocally increased Treg cells by regulating STAT proteins in autoimmune arthritis model. The expressions of pro-inflammatory cytokines and nitrotyrosine in synovium were significantly inhibited by GSPE treatment. Taken together, GSPE functions as a reciprocal regulator of T cell differentiation - suppression of Th17 cells and induction of Tregs in both DIO and obese CIA mice. GSPE may act as a therapeutic agent to treat immunologic diseases related with enhanced STAT3 activity such as metabolic disorders and autoimmune diseases.


Assuntos
Artrite/prevenção & controle , Diferenciação Celular/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Obesidade/prevenção & controle , Proantocianidinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Administração Oral , Animais , Artrite/complicações , Artrite Experimental/complicações , Artrite Experimental/prevenção & controle , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Extrato de Sementes de Uva/administração & dosagem , Humanos , Inflamação/complicações , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Microscopia Confocal , Obesidade/complicações , Obesidade/etiologia , Proantocianidinas/administração & dosagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Células Th17/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA