Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Transl Psychiatry ; 13(1): 357, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993441

RESUMO

Post-traumatic stress disorder (PTSD) is a mental disorder that develops after exposure to a traumatic event. Owing to the relatively low rates of response and remission with selective serotonin reuptake inhibitors as the primary treatment for PTSD, there is a recognized need for alternative strategies to effectively address the symptoms of PTSD. Dysregulation of glutamatergic neurotransmission plays a critical role in various disorders, including anxiety, depression, PTSD, and Alzheimer's disease. Therefore, the regulation of glutamate levels holds great promise as a therapeutic target for the treatment of mental disorders. Electroacupuncture (EA) has become increasingly popular as a complementary and alternative medicine approach. It maintains the homeostasis of central nervous system (CNS) function and alleviates symptoms associated with anxiety, depression, and insomnia. This study investigated the effects of EA at the GV29 (Yintang) acupoint three times per week for 2 weeks in an animal model of PTSD. PTSD was induced using single prolonged stress/shock (SPSS) in mice, that is, SPS with additional foot shock stimulation. EA treatment significantly reduced PTSD-like behavior and effectively regulated serum corticosterone and serotonin levels in the PTSD model. Additionally, EA treatment decreased glutamate levels and glutamate neurotransmission-related proteins (pNR1 and NR2B) in the hippocampus of a PTSD model. In addition, neuronal activity and the number of Golgi-impregnated dendritic spines were significantly lower in the EA treatment group than in the SPSS group. Notably, EA treatment effectively reduced glutamate-induced excitotoxicity (caspase-3, Bax, and pJNK). These findings suggest that EA treatment at the GV29 acupoint holds promise as a potential therapeutic approach for PTSD, possibly through the regulation of NR2B receptor-mediated glutamate neurotransmission to reduce PTSD-like behaviors.


Assuntos
Eletroacupuntura , Transtornos de Estresse Pós-Traumáticos , Humanos , Camundongos , Animais , Transtornos de Estresse Pós-Traumáticos/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças , Transmissão Sináptica
2.
Nutrients ; 15(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686847

RESUMO

Post-traumatic stress disorder (PTSD) is an anxiety disorder caused by traumatic or frightening events, with intensified anxiety, fear memories, and cognitive impairment caused by a dysfunctional hippocampus. Owing to its complex phenotype, currently prescribed treatments for PTSD are limited. This study investigated the psychopharmacological effects of novel COMBINATION herbal medicines on the hippocampus of a PTSD murine model induced by combining single prolonged stress (SPS) and foot shock (FS). We designed a novel herbal formula extract (HFE) from Chaenomeles sinensis, Glycyrrhiza uralensis, and Atractylodes macrocephala. SPS+FS mice were administered HFE (500 and 1000 mg/kg) once daily for 14 days. The effects of HFE of HFE on the hippocampus were analyzed using behavioral tests, immunostaining, Golgi staining, and Western blotting. HFE alleviated anxiety-like behavior and fear response, improved short-term memory, and restored hippocampal dysfunction, including hippocampal neurogenesis alteration and aberrant migration and hyperactivation of dentate granule cells in SPS+FS mice. HFE increased phosphorylation of the Kv4.2 potassium channel, extracellular signal-regulated kinase, and cAMP response element-binding protein, which were reduced in the hippocampus of SPS+FS mice. Therefore, our study suggests HFE as a potential therapeutic drug for PTSD by improving behavioral impairment and hippocampal dysfunction and regulating Kv4.2 potassium channel-related pathways in the hippocampus.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Camundongos , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Canais de Potássio Shal , Transtornos de Ansiedade , Modelos Animais , Hipocampo
3.
Chin J Integr Med ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695446

RESUMO

OBJECTIVE: To examine the effect of combined treatment with Bojungikgi-tang (BJIGT, Buzhong Yiqi Decoction) and riluzole (RZ) in transactive response DNA-binding protein 43 (TDP-43) stress granule (SG) cells, a amyotrophic lateral sclerosis (ALS) cell line using transcriptomic and molecular techniques. METHODS: TDP-43 SG cells were pretreated with BJIGT (100 µg/mL), RZ (50 µmol/L), and combined BJIGT (100 µg/mL)/RZ (50 µmol/L) for 6 h before treatment with lipopolysaccharide (LPS, 200 µmol/L). Cell viability assay was performed to elucidate cell toxicity in TDP-43 SC cells using a cell-counting kit-8 (CCK8) assay kit. The expression levels of cell death-related proteins, including Bax, caspase 1, cleaved caspase 3 and DJ1 in TDP-43 SG cells were examined by Western blot analysis. The autophagy-related proteins, including pmTOR/mTOR, LC3b, P62, ATG7 and Bcl-2-associated athanogene 3 (Bag3) were investigated using immunofluorescence and immunoblotting assays. RESULTS: Cell viability assay and Western blot analysis showed that combined treatment with BJIGT and RZ suppressed LPS-induced cell death and expression of cell death-related proteins, including Bax, caspase 1, and DJ1 (P<0.05 or P<0.01). Immunofluorescence and immunoblotting assays showed that combined treatment with BJIGT and RZ reduced LPS-induced formation of TDP-43 aggregates and regulated autophagy-related protein levels, including p62, light chain 3b, Bag3, and ATG7, in TDP-43-expressing cells (P<0.05 or P<0.01). CONCLUSION: The combined treatment of BJIGT and RZ might reduce inflammation and regulate autophagy dysfunction in TDP-43-induced ALS.

4.
Front Biosci (Landmark Ed) ; 28(12): 326, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38179776

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a systemic disease with multiple pathological effects, including neuroinflammation, oxidative stress, autophagy, mitochondrial dysfunction, and endoplasmic reticulum stress. Despite many studies seeking to identify and develop effective therapies, effective ALS treatment has yet to be approved. Hence, patients with ALS ultimately experience muscle atrophy and loss of motor neurons. Herbal medicines have been used to treat numerous diseases by modulating multiple biological processes and exerting pharmacological effects, including anti-inflammatory and antioxidant properties. In particular, Chaenomeles sinensis Koehne (CS) exhibits anti-hyperuricemic and nephroprotective effects and is used to treat anaphylaxis, viral infections, and neurodegenerative diseases, such as Alzheimer's disease. This study monitored the effects of CS supplementation on muscle function and motor neurons in hSOD1G93A mice, an established ALS animal model. METHODS: Body weight measurements and behavioral tests were performed; additionally, western blotting and immunohistochemistry analyses were conducted using the mice gastrocnemius, tibialis anterior, and spinal cord. RESULTS: CS augmented anti-inflammatory and antioxidant effects in the muscle and spinal cord of hSOD1G93A mice. Furthermore, CS improved motor function and regulated autophagy in the muscles of the hSOD1G93A mice. CONCLUSIONS: CS might represent a promising supplement for improving motor function and delaying ALS progression. However, its development for clinical use warrants further investigation.


Assuntos
Esclerose Lateral Amiotrófica , Rosaceae , Humanos , Camundongos , Animais , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Camundongos Transgênicos , Modelos Animais de Doenças , Medula Espinal , Rosaceae/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
5.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35890196

RESUMO

Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic events and is characterized by overwhelming fear and anxiety. Disturbances in the hypothalamic-pituitary-adrenal (HPA) axis are involved in the pathogenesis of mood disorders, including anxiety, PTSD, and major depressive disorders. Studies have demonstrated the relationship between the HPA axis response and stress vulnerability, indicating that the HPA axis regulates the immune system, fear memory, and neurotransmission. The selective serotonin reuptake inhibitors (SSRIs), sertraline and paroxetine, are the only drugs that have been approved by the United States Food and Drug Administration for the treatment of PTSD. However, SSRIs require long treatment times and are associated with lower response and remission rates; therefore, additional pharmacological interventions are required. Complementary and alternative medicine therapies ameliorate HPA axis disturbances through regulation of gut dysbiosis, insomnia, chronic stress, and depression. We have described the cellular and molecular mechanisms through which the HPA axis is involved in PTSD pathogenesis and have evaluated the potential of herbal medicines for PTSD treatment. Herbal medicines could comprise a good therapeutic strategy for HPA axis regulation and can simultaneously improve PTSD-related symptoms. Finally, herbal medicines may lead to novel biologically driven approaches for the treatment and prevention of PTSD.

6.
Mediators Inflamm ; 2022: 4754732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832305

RESUMO

Amyotrophic lateral sclerosis (ALS), a multicomplex neurodegenerative disease, has multiple underlying pathological factors and can induce other neuromuscular diseases, leading to muscle atrophy and respiratory failure. Currently, there is no effective drug for treating patients with ALS. Herbal medicine, used to treat various diseases, has multitarget effects and does not usually induce side effects. Each bioactive component in such herbal combinations can exert a mechanism of action to increase therapeutic efficacy. Herein, we investigated the efficacy of an herbal formula, comprising Achyranthes bidentata Blume, Eucommia ulmoides Oliver, and Paeonia lactiflora Pallas, in suppressing the pathological mechanism of ALS in male hSOD1G93A mice. Herbal formula extract (HFE) (1 mg/g) were orally administered once daily for six weeks, starting at eight weeks of age, in hSOD1G93A transgenic mice. To evaluate the effects of HFE, we performed footprint behavioral tests, western blotting, and immunohistochemistry to detect protein expression and quantitative PCR to detect mRNA levels in the muscles and spinal cord of hSOD1G93A mice. HFE-treated hSOD1G93A mice showed increased anti-inflammation, antioxidation, and regulation of autophagy in the muscles and spinal cord. Thus, HEF can be therapeutic candidates for inhibiting disease progression in patients with ALS. This study has some limitations. Although this experiment was performed only in male hSOD1G93A mice, studies that investigate the efficacy of HEF in various ALS models including female mice, such as mice modeling TAR DNA-binding protein 43 (TDP43) and ORF 72 on chromosome 9 (C9orf72) ALS, are required before it can be established that HEF are therapeutic candidates for patients with ALS.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Músculos/metabolismo , Doenças Neurodegenerativas/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
7.
Antioxidants (Basel) ; 11(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326229

RESUMO

The progressive neurodegenerative disease, amyotrophic lateral sclerosis (ALS), is characterized by muscle weakness and atrophy owing to selective motoneuron degeneration. The anti-glutamatergic drug, riluzole (RZ), is the standard-of-care treatment for ALS. Bojungikgi-tang (BJIGT), a traditional herbal formula, improves motor function and prolongs the survival of mice with ALS. As ALS is a multicomplex disease, effective therapies must target multiple mechanisms. Here, we evaluated the efficacy of a BJIGT/RZ combination (5-week treatment) in 2-month-old hSOD1G93A mice with ALS. We performed quantitative polymerase chain reaction, Western blotting, immunohistochemistry, and enzyme activity assays. BJIGT/RZ significantly attenuated inflammation, autophagy, and metabolic and mitochondrial dysfunctions in the gastrocnemius (GC) compared with the control. It reduced the mRNA and protein levels of muscle denervation-related proteins and creatine kinase levels. The total creatine level was significantly higher in the BJIGT/RZ-treated GC. Moreover, after BJIGT/RZ treatment, the number of Nissl-stained motoneurons and choline acetyl transferase-positive neurons in the spinal cord significantly increased via the regulation of proinflammatory cytokines. Collectively, the BJIGT/RZ treatment was superior to single-drug treatments in alleviating multiple ALS-related pathological mechanisms in the ALS mouse model. Overall, BJIGT can serve as a dietary supplement and be combined with RZ to achieve superior therapeutic effects against ALS.

8.
Antioxidants (Basel) ; 11(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35052677

RESUMO

To date, no effective drugs exist for amyotrophic lateral sclerosis (ALS), although riluzole (RZ) and edaravone have been approved for treatment. We previously reported that Bojungikgi-tang (BJIGT) improved motor activity through anti-inflammatory effects in the muscle and spinal cord of hSOD1G93A mice. Therefore, whether combined treatment with BJIGT and RZ synergistically affects liver function in hSOD1G93A mice was investigated. Two-month-old male hSOD1G93A mice were treated with BJIGT (1 mg/g) and RZ (8 µg/g) administered orally for 5 weeks. Drug metabolism and liver function tests of serum and liver homogenates were conducted. mRNA expression levels of cytochrome P450 (CYP) isozymes, inflammatory cytokines, metabolic factors, and mitochondrial oxidative phosphorylation (OXPHOS) subunits were examined using qPCR and Western blotting. Combined administration of BJIGT and RZ did not alter mRNA expression levels of drug-metabolism-related isozymes (CYP1A2 and CYP3A4) but significantly decreased the activity of liver-function-related enzymes (AST, ALT, ALP, and LDH). Increased expression of inflammatory cytokines (IL-1ß, TNF-α, and IL-6) and of intracellular stress-related proteins (Bax, AMPKα, JNK, and p38) was reduced by the combined treatment in hSOD1G93A mice compared to that in control mice. Combined administration reduced the mRNA expression of metabolism-related factors and the expression of OXPHOS subunits. Elevated ATP levels and mitochondrial-fusion-associated protein were decreased after co-administration. Co-administration of BJIGT and RZ did not cause liver damage or toxicity but rather restored liver function in hSOD1G93A mice. This suggests that this combination can be considered a candidate therapeutic agent for ALS.

9.
Front Neurosci ; 15: 743705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858128

RESUMO

Amyotrophic lateral sclerosis (ALS) is a complex disease characterized by motor neuron loss and muscle atrophy. There is no prominent treatment for ALS as the pathogenic process in the skeletal muscle and spinal cord is complex and multifactorial. Therefore, we investigated the effects of a herbal formula on the multi-target effects in the skeletal muscle and spinal cord in hSOD1G93A transgenic mice. We prepared a herbal extract (HE) from Glycyrrhiza uralensis, Atractylodes macrocephala Koidzumi, Panax ginseng, and Astragalus membranaceus. Control and HE-treated mice underwent rotarod and footprint tests. We also performed immunohistochemical and Western blotting analyses to assess expression of inflammation-related and oxidative stress-related proteins in the muscle and spinal cord tissues. We found that the HE increased motor activity and reduced motor neuron loss in hSOD1G93A mice. In addition, the HE significantly reduced the levels of inflammatory proteins and oxidative stress-related proteins in the skeletal muscles and spinal cord of hSOD1G93A mice. Furthermore, we demonstrated that the HE regulated autophagy function and augmented neuromuscular junction in the muscle of hSOD1G93A mice. Based on these results, we propose that the HE formula may be a potential therapeutic strategy for multi-target treatment in complex and multifactorial pathological diseases.

10.
Artigo em Inglês | MEDLINE | ID: mdl-34616479

RESUMO

Amyotrophic lateral sclerosis (ALS) is caused by selective the loss of spinal motor neurons by multifactorial pathological mechanisms and results in muscle atrophy. Incidence rates of ALS are increasing over time, but there are no effective treatments at present due to limitations on approved therapies (riluzole and edaravone). Therefore, this study investigated whether combined treatment with Bojungikgi-tang and riluzole could act synergistically in transactive response DNA-binding protein 43 (TDP-43) stress granule cells. To examine the effect of combined treatment on oxidative stress-induced cell death, the CCK8 assay was performed for the detection of cell viability. The expression of oxidative stress-induced proteins was determined by Western blot. Quantification of sodium arsenite-induced reactive oxygen species (ROS) was measured in TDP-43 stress granular cells using 2,7-diacetyl dichlorofluorescein diacetate. To investigate the effect of combined treatment on TDP-43 aggregation, immunofluorescence and immunoblotting were performed in TDP-43 stress granular cells. This combined treatment alleviated oxidative stress-induced cell death by increasing the expression levels of antioxidation proteins, such as heme oxygenase-1 and B cell lymphoma-2-associated X protein. Furthermore, it reduced oxidative stress-induced TDP-43 aggregates and lowered the levels of autophagy-related proteins, including p62, light chain 3b, and ATG8, in TDP-43-expressing cells. Our results suggest that this combined treatment could be helpful for autophagy regulation in other neurodegenerative diseases.

11.
Front Pharmacol ; 11: 606480, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362561

RESUMO

The complexity of pathological mechanisms in Alzheimer's disease (AD) poses significant challenges to the development of corresponding drugs. Symptom-specific pharmacological interventions and alternative treatments provide promising treatment possibilities. Therefore, we considered a combination of selegiline (SEL) and electroacupuncture (EA). We used an animal model with AD to investigate the effect of a combination of these treatments on cognitive function. 5XFAD mice received a week of SEL treatment and 2 weeks of EA. Novel object recognition and Y-maze tests were subsequently performed to assess their cognitive functions. To determine the molecular action of the combination treatment, Western blots, Aß1-42 enzyme-linked immunosorbent assays (ELISA), and micro-positron-emission tomography were also performed to assess pathological markers and processes. The results were assessed based on the difference between untreated transgenic, SEL-treated, and SEL- and EA-treated groups of mice. Mice in the combined treatment group demonstrated significantly better cognitive functions, and lesser neuroinflammation than the comparative groups. In addition, mice treated with a combination of SEL and EA did not demonstrate a direct modulation of insoluble Aß but demonstrated greater glucose metabolism. Our findings demonstrated that SEL combined with EA treatment was associated with better cognitive functioning due to inhibition of neuroinflammation and increased glucose metabolism relative to the comparative groups in a mouse model with AD.

12.
J Neuroinflammation ; 16(1): 264, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836020

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive loss of cognitive abilities and memory leading to dementia. Electroacupuncture (EA) is a complementary alternative medicine approach, applying an electrical current to acupuncture points. In clinical and animal studies, EA causes cognitive improvements in AD and vascular dementia. However, EA-induced changes in cognition and microglia-mediated amyloid ß (Aß) degradation have not been determined yet in AD animals. Therefore, this study investigated the EA-induced molecular mechanisms causing cognitive improvement and anti-inflammatory activity in five familial mutation (5XFAD) mice, an animal model of AD. METHODS: 5XFAD mice were bilaterally treated with EA at the Taegye (KI3) acupoints three times per week for 2 weeks. To evaluate the effects of EA treatment on cognitive functions, novel object recognition and Y-maze tests were performed with non-Tg, 5XFAD (Tg), and EA-treated 5XFAD (Tg + KI3) mice. To examine the molecular mechanisms underlying EA effects, western blots, immunohistochemistry, and micro-positron emission tomography scans were performed. Furthermore, we studied synapse ultrastructures with transmission electron microscopy and used electrophysiology to investigate EA effects on synaptic plasticity in 5XFAD mice. RESULTS: EA treatment significantly improved working memory and synaptic plasticity, alleviated neuroinflammation, and reduced ultrastructural degradation of synapses via upregulation of synaptophysin and postsynaptic density-95 protein in 5XFAD mice. Furthermore, microglia-mediated Aß deposition was reduced after EA treatment and coincided with a reduction in amyloid precursor protein. CONCLUSIONS: Our findings demonstrate that EA treatment ameliorates cognitive impairment via inhibition of synaptic degeneration and neuroinflammation in a mouse model of AD.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/terapia , Modelos Animais de Doenças , Eletroacupuntura/métodos , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Camundongos , Camundongos Transgênicos
13.
Integr Med Res ; 8(4): 234-239, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31692669

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease that is characterized by selective motor neuron cell death in the motor cortex, brainstem, and spinal cord. Two drugs for ALS, riluzole and edaravone, have been approved by FDA for the treatment of ALS patients. However, they have many side effects, and riluzole extends the patient's life by only 2-3 months. Therefore, ALS patients seek an effective therapy for treating the symptoms or delaying the progression of ALS. Based on this, we review the effects of complementary and alternative medicine (CAM) in ALS animals or patients to verify the efficacy of CAM in incurable diseases. For this review, we searched published papers focusing on the effect of CAM in pre-clinical and clinical study in ALS. METHODS: The search keywords included amyotrophic lateral sclerosis, acupuncture, herbal medicine, Traditional Chinese medicine, CAM, animals, and clinical study through electronic databases PubMed and Google Scholar from their inception until March 2019. RESULTS: In the ALS animal model, CAM modulated the immune system to increase motor function by reducing the expression levels of neuroinflammatory proteins in the spinal cord. Besides this, ALS patients treated with herbal medicine showed improved disease symptoms, but clinical trials with larger sample sizes are needed to develop a treatment with this herbal medicine. CONCLUSION: This review shows that CAM may be useful for ALS treatment, but more evidence regarding the efficacy and molecular mechanisms is required to establish CAM as a good therapy for the treatment of ALS patients.

14.
Nutrients ; 11(11)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689925

RESUMO

Hochu-ekki-to (Bojungikgi-Tang (BJIGT) in Korea; Bu-Zhong-Yi-Qi Tang in Chinese), a traditional herbal prescription, has been widely used in Asia. Hochu-ekki-to (HET) is used to enhance the immune system in respiratory disorders, improve the nutritional status associated with chronic diseases, enhance the mucosal immune system, and improve learning and memory. Amyotrophic lateral sclerosis (ALS) is pathologically characterized by motor neuron cell death and muscle paralysis, and is an adult-onset motor neuron disease. Several pathological mechanisms of ALS have been reported by clinical and in vitro/in vivo studies using ALS models. However, the underlying mechanisms remain elusive, and the critical pathological target needs to be identified before effective drugs can be developed for patients with ALS. Since ALS is a disease involving both motor neuron death and skeletal muscle paralysis, suitable therapy with optimal treatment effects would involve a motor neuron target combined with a skeletal muscle target. Herbal medicine is effective for complex diseases because it consists of multiple components for multiple targets. Therefore, we investigated the effect of the herbal medicine HET on motor function and survival in hSOD1G93A transgenic mice. HET was orally administered once a day for 6 weeks from the age of 2 months (the pre-symptomatic stage) of hSOD1G93A transgenic mice. We used the rota-rod test and foot printing test to examine motor activity, and Western blotting and H&E staining for evaluation of the effects of HET in the gastrocnemius muscle and lumbar (L4-5) spinal cord of mice. We found that HET treatment dramatically inhibited inflammation and oxidative stress both in the spinal cord and gastrocnemius of hSOD1G93A transgenic mice. Furthermore, HET treatment improved motor function and extended the survival of hSOD1G93A transgenic mice. Our findings suggest that HET treatment may modulate the immune reaction in muscles and neurons to delay disease progression in a model of ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-30891075

RESUMO

Neuroinflammation is considered a critical factor in the pathologic mechanisms of amyotrophic lateral sclerosis (ALS). This study examined the levels of neuroinflammatory proteins in the spinal cord of JGT-treated hSOD1 G93A transgenic mice to determine the effect of Jaeumganghwa-Tang (JGT) on neuroinflammation. Twelve 8-week-old male experimental mice were randomly allocated to three groups: a non-transgenic group, a hSOD1G93A transgenic group, and a hSOD1G93A transgenic group that received JGT 1 mg/g orally once daily for 6 weeks. After 6 weeks, the spinal cord tissues were analyzed for inflammatory proteins (Iba-1, toll-like receptor 4, and tumor necrosis factor-α) and oxidative stress-related proteins (transferrin, ferritin, HO1, and NQO1) by Western blot analysis. Administration of JGT significantly delayed motor function impairment and reduced oxidative stress in hSOD1 G93A transgenic mice. JGT effectively ameliorated neuroinflammation mechanisms by downregulating TLR4-related signaling proteins and improving iron homeostasis in the spinal cord of hSOD1 G93A mice. JGT could help to decrease neuroinflammation and protect neuronal cells by strengthening the immune response in the central nervous system. This is the first study to demonstrate the role of JGT in neuroinflammation in an animal model of ALS.

16.
Mol Neurobiol ; 56(4): 2394-2407, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30030751

RESUMO

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by progressive motor function impairment, dysphagia, and respiratory failure. Owing to the complexity of its pathogenic mechanisms, an effective therapy for ALS is lacking. Herbal medicines with multiple targets have good efficacy and low adverse reactions for the treatment of neurodegenerative diseases. In this study, the effects of Bojungikgi-tang (BJIGT), an herbal medicine with eight component herbs, on muscle and spinal cord function were evaluated in an ALS animal model. Animals were randomly divided into three groups: a non-transgenic group (nTg, n = 24), a hSOD1G93A transgenic group (Tg, n = 24), and a hSOD1G93A transgenic group in which 8-week-old mice were orally administered BJIGT (1 mg/g) once daily for 6 weeks (Tg+BJIGT, n = 24). The effects of BJIGT were evaluated using a rotarod test, foot-printing, and survival analyses based on Kaplan-Meier survival curves. To determine the biological mechanism underlying the effects of BJIGT in hSOD1G93A mice, western blotting, transmission electron microscopy, and Bungarotoxin staining were used. BJIGT improved motor function and extended the survival duration of hSOD1G93A mice. In addition, BJIGT had protective effects, including anti-oxidative and anti-inflammatory effects, in both the spinal cord and muscle of hSOD1G93A mice. Our results demonstrated that BJIGT causes muscle atrophy and the denervation of neuromuscular junctions in the gastrocnemius of hSOD1G93A mice. The components of BJIGT may alleviate the symptoms of ALS via different mechanisms, and accordingly, BJIGT treatment may be an effective therapeutic approach.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/fisiopatologia , Medicamentos de Ervas Chinesas/uso terapêutico , Músculo Esquelético/fisiopatologia , Medula Espinal/fisiopatologia , Esclerose Lateral Amiotrófica/patologia , Animais , Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Inflamação/patologia , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Atividade Motora/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/patologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/ultraestrutura , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Superóxido Dismutase-1/metabolismo , Análise de Sobrevida
17.
Artigo em Inglês | MEDLINE | ID: mdl-30034501

RESUMO

Inflammation is considered a critical factor in the pathogenesis of amyotrophic lateral sclerosis (ALS). We aimed to evaluate the effect of the herbal formula Gamisoyo-San (GSS) on the muscles of hSOD1G93A transgenic mice, a mouse model of ALS, by examining the tissue expression of inflammation- and oxidative stress-related proteins. The mice were randomly divided into three groups: nontransgenic mice (non-Tg, n = 4), hSOD1G93A transgenic mice (Tg, n = 4), and GSS-treated hSOD1G93A transgenic mice (Tg+GSS, n = 4). Eight-week-old female hSOD1G93A transgenic mice were fed GSS (1 mg/g body weight) for 6 weeks. Gastrocnemius (GA) tissues were analyzed for inflammatory proteins [CD11b and toll-like receptor 4 (TLR4)] and oxidative stress-related proteins [heme oxygenase 1 (HO1) and ferritin] by western blot analysis. Administration of GSS significantly reduced the level of inflammation- and oxidative stress-related proteins in hSOD1G93A transgenic mice. GSS ameliorated inflammation by downregulating TLR4 and CD11b expression and regulated iron homeostasis in the GA muscle of hSOD1G93A mice. GSS could help reduce inflammation by regulating immune reactions in patients with ALS. To the best of our knowledge, this is the first study to demonstrate the effect of GSS on muscle inflammation in an ALS animal model.

18.
Mediators Inflamm ; 2018: 5897817, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30046279

RESUMO

Amyotrophic lateral sclerosis (ALS), a progressive disorder, causes motor neuron degeneration and neuromuscular synapse denervation. Because this is a complex disease, there are no effective drugs for the treatment of patients with ALS. For example, riluzole is used in many countries but has many side effects and only increases the lifespan of patients by approximately 2-3 months. Therefore, patients with ALS often turn to complementary and alternative medicine, such as acupuncture, homeopathy, and herbal medicine, with the hope and belief of recovery, despite the lack of definite evidence on the efficacy of these methods. Gamisoyo-San (GSS), a herbal medicine known to improve health, has been used for stress-related neuropsychological disorders, including anorexia, in Asian countries, such as China, Korea, and Japan. To evaluate the effects of GSS on the spinal cord, we investigated the expression of neuroinflammatory and metabolic proteins in symptomatic hSOD1G93A mice. We observed that GSS reduces the expression of glial markers, including those for microglia and astrocytes, and prevents neuronal loss. Moreover, we found that GSS inhibits the expression of proteins related to Toll-like receptor 4 signaling and oxidative stress, known to cause neuroinflammation. Notably, GSS also regulates metabolism in the spinal cord of transgenic mice. These results suggest that GSS could be used for improving the immune system and increasing the life quality of patients with ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/tratamento farmacológico , Preparações de Plantas/farmacologia , Medula Espinal/efeitos dos fármacos , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/genética , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Heme Oxigenase-1/metabolismo , Sistema Imunitário , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Doenças do Sistema Nervoso/patologia , Neuroglia/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Qualidade de Vida , Transdução de Sinais , Medula Espinal/patologia , Receptor 4 Toll-Like/metabolismo , Transferrina/metabolismo
19.
Neuroimmunomodulation ; 25(2): 73-79, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30045027

RESUMO

OBJECTIVE: Chronic neuroinflammation after spinal cord injury (SCI) is associated with spinal cord damage and functional impairment. In patients, SCI is associated with severe disability, an extensive rehabilitation requirement, and high cost burden. Moreover, there is no effective treatment for SCI. Taklisodok-um (TLSDU) is a traditional herbal medicine used in Korea and China to facilitate detoxification and drainage. This study investigated the therapeutic effect of TLSDU after SCI. METHODS: Seven-week-old ICR mice (male, 20-30 g) underwent hemi-transection in the T9-10 segment of the spinal cord and were divided into 3 groups: sham, SCI + control treatment, and SCI + TLSDU treatment. TLSDU treatment was initiated the day after SCI surgery and administered once daily for 3 weeks at an oral dose of 1.2 mg/g. The mice were weighed for 3 weeks. At the age of 10 weeks, all mice were sacrificed and immunohistochemistry and Western blotting were performed. RESULTS: We found that TLSDU facilitated healthy weight gain and attenuated the expression of neuroinflammatory markers. GFAP and Iba-1 expression levels were downregulated in the spinal cords of TLSDU-treated SCI mice as compared to control SCI mice. Additionally, pro-inflammatory proteins CD11b and BAX were induced in control SCI mice, but their expression was attenuated in TLSDU-treated SCI mice. Finally, we found that the expression of TLR4 signaling pathway-related proteins was downregulated in TLSDU-treated SCI mice as compared to control SCI mice. CONCLUSION: These findings suggest that TLSDU attenuates neuroinflammation after SCI in part by regulating TLR4 signaling at the injury site.


Assuntos
Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Preparações de Plantas/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Vértebras Torácicas , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microglia/efeitos dos fármacos , Microglia/metabolismo , Preparações de Plantas/farmacologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-29234418

RESUMO

Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by the accumulation of amyloid beta (Aß) plaques, neurofibrillary tangles, and severe functional deficits in the brain. The pathogenesis and treatment of AD remain topics of investigation and significant global socioeconomic issues. The effect of complementary medicine has been investigated in managing AD. Acupuncture, a form of therapy practiced for more than 3000 years, has shown positive effects on several neurological disorders including AD. Animal studies have evaluated the specific utility and neuropathological mechanisms addressed by acupoint manipulation; however, no study has summarized the relationships among different acupoints and their therapeutic effects in the context of AD. Therefore, we reviewed the effects of acupuncture at different acupoints in animal models of AD. In general, acupuncture produced therapeutic benefits in rodent models of AD. Studies demonstrate the utility of GV20 as a valuable acupoint for electroacupuncture and manual acupuncture. GV20 stimulation suppresses Aß generation, improves glucose metabolism, and attenuates neuropathological features in various disease models. However, a lack of sufficient evidence in preclinical and clinical studies makes these results controversial. Additional studies are required to confirm the exact utility of specific acupoints in clinically managing AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA