Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theriogenology ; 208: 88-101, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307736

RESUMO

Appropriate additives can provide a suitable physiological environment for storage of fish sperm and facilitate the large-scale breeding of endangered species and commercial fish. Suitable additives for fish sperm storage in vitro are required for artificial insemination. This study evaluate the effects of 0.1, 0.5, 1.5, and 4.5 mg/L selenium nanoparticles (SeNPs) on the quality of Schizothorax prenanti and Onychostoma macrolepis sperm storage in vitro at 4 °C for 72 h. We found that 0.5 mg/L SeNPs was a suitable concentration for maintaining the normal physiological state of O. macrolepis sperm during storage at 4 °C (p < 0.05). Higher adenosine triphosphate (ATP) content of O. macrolepis sperm before and after activation was present at that concentration. To further explore the potential mechanism of action of SeNPs on O. macrolepis sperm, western blotting and glucose uptake analyses were performed. The results implied that after 24 h of in vitro preservation, 0.5 mg/L SeNPs significantly improved p-AMPK levels and glucose uptake capacity of O. macrolepis sperm, while compound C (CC), the inhibitor of activated AMP-activated protein kinase (p-AMPK), significantly restricted the function of SeNPs on stored sperm. Similar effects of 0.5 mg/L SeNPs were found on Schizothorax prenanti sperm. Our study demonstrates that SeNPs maintained ATP content and O. macrolepis and Schizothorax prenanti sperm function during storage in vitro for 72 h, possibly because SeNPs enhanced the glucose uptake capacity of sperm by maintaining the level of p-AMPK.


Assuntos
Nanopartículas , Selênio , Masculino , Animais , Selênio/farmacologia , Proteínas Quinases Ativadas por AMP , Sêmen , Peixes , Trifosfato de Adenosina , Glucose
2.
J Agric Food Chem ; 56(17): 7891-6, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18683943

RESUMO

To reduce the cost of biodiesel production, the feasibility of Zanthoxylum bungeanum Maxim seed oil (ZBMSO) was studied to produce biodiesel. A methyl ester biodiesel was produced from ZBMSO using methanol, sulfuric acid, and potassium hydroxide in a two-stage process. The main variables that affect the process were investigated. The high level of free fatty acids in ZBMSO was reduced to < 1% by an acid-catalyzed (2% H2SO4) esterification with methanol to oil molar ratios of 20-25:1 for 1 h. A maximum yield of 96% of methyl esters in ZBMSO biodiesel was achieved using a 6.5:1 molar ratio of methanol to oil, 0.9% KOH (percent oil), and reaction time of 0.5 h at 55 degrees C. Further investigation has also been devoted to the assessment of some important fuel properties of ZBMSO biodiesel produced under the optimized conditions according to specifications for biodiesel as fuel in diesel engines. The fuel properties of the ZBMSO biodiesel obtained are similar to those of no. 0 petroleum diesel fuel, and most of the parameters comply with the limits established by specifications for biodiesel.


Assuntos
Fontes Geradoras de Energia , Óleos de Plantas/química , Sementes/química , Zanthoxylum/química , Fontes Geradoras de Energia/economia , Esterificação , Ácidos Graxos não Esterificados/análise , Estudos de Viabilidade , Gasolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA