Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1154-1163, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621962

RESUMO

Ischemic stroke is divided into acute phase, subacute phase, and recovery phase, with different pathological and physiological characteristics manifested at each stage. Among them, immune and inflammatory reactions persist for several days and weeks after ischemia. Ischemic stroke not only triggers local inflammation in damaged brain regions but also induces a disorder in the immune system, thereby promoting neuroinflammation and exacerbating brain damage. Therefore, conducting an in-depth analysis of the interaction between the central nervous system and the immune system after ischemic stroke, intervening in the main factors of the interaction between them, blocking pathological cascades, and thereby reducing brain inflammation have become the treatment strategies for ischemic stroke. This study summarizes and sorts out the interaction pathways between the central nervous system and the immune system. The impact of the central nervous system on the immune system can be analyzed from the perspective of the autonomic nervous system, the hypothalamic-pituitary-adrenal axis(HPA), and local inflammatory stimulation. The impact of the immune system on the central nervous system can be analyzed from the dynamic changes of immune cells. At the same time, the relevant progress in the prevention and treatment of traditional Chinese medicine(TCM) is summarized, so as to provide new insights for the analysis of complex mechanisms of TCM in preventing and treating ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/tratamento farmacológico , Medicina Tradicional Chinesa , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipófise-Suprarrenal/patologia , Sistema Nervoso Central , Isquemia Encefálica/terapia , Sistema Imunitário , Inflamação
2.
J Chromatogr A ; 1719: 464732, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38387153

RESUMO

The extraction methods for traditional Chinese medicine (TCM) may have varying therapeutic effects on diseases. Currently, Pueraria lobata (PL) is mostly extracted with ethanol, but decoction, as a TCM extraction method, is not widely adopted. In this study, we present a strategy that integrates targeted metabolomics, 16 s rDNA sequencing technology and metagenomics for exploring the potential mechanism of the water extract of PL (PLE) in treating myocardial infarction (MI). Using advanced analytical techniques like ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), we comprehensively characterized PLE's chemical composition. Further, we tested its efficacy in a rat model of MI induced by ligation of the left anterior descending branch of the coronary artery (LAD). We assessed cardiac enzyme levels and conducted echocardiograms. UPLC-MS/MS was used to compare amino acid differences in serum. Furthermore, we investigated fecal samples using 16S rDNA sequencing and metagenomic sequencing to study intestinal flora diversity and function. This study demonstrated PLE's effectiveness in reducing cardiac injury in LAD-ligated rats. Amino acid metabolomics revealed significant improvements in serum levels of arginine, citrulline, proline, ornithine, creatine, creatinine, and sarcosine in MI rats, which are key compounds in the arginine metabolism pathway. Enzyme-linked immunosorbent assay (ELISA) results showed that PLE significantly improved arginase (Arg), nitric oxide synthase (NOS), and creatine kinase (CK) contents in the liver tissue of MI rats. 16 s rDNA and metagenome sequencing revealed that PLE significantly improved intestinal flora imbalance in MI rats, particularly in taxa such as Tuzzerella, Desulfovibrio, Fournierella, Oscillibater, Harryflintia, and Holdemania. PLE also improved the arginine metabolic pathway in the intestinal microorganisms of MI rats. The findings indicate that PLE effectively modulates MI-induced arginine levels and restores intestinal flora balance. This study, the first to explore the mechanism of action of PLE in MI treatment considering amino acid metabolism and intestinal flora, expands our understanding of the potential of PL in MI treatment. It offers fresh insights into the mechanisms of PL, guiding further research and development of PL-based medicines.


Assuntos
Medicamentos de Ervas Chinesas , Infarto do Miocárdio , Pueraria , Ratos , Animais , Arginina , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica/métodos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Aminoácidos , DNA Ribossômico
3.
Zhongguo Zhong Yao Za Zhi ; 49(2): 487-497, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403324

RESUMO

This study aims to explore the anti-inflammatory, vasodilation, and cardioprotective effects of the intestinal absorption liquids containing Xinshubao Tablets or single herbs, and to elucidate the potential mechanism based on network pharmacology. Western blot was then conducted to validate the expression changes of core proteins. Lipopolysaccharide(LPS)-stimulated RAW264.7 cells were used to observe the anti-inflammatory effect. The vasodilation activity was examined by the microvessel relaxation assay in vitro. Oxygen-glucose deprivation(OGD)-induced H9c2 cells were used to investigate the cardioprotective effect. The chemical components were retrieved from Herb databases and composition of Xinshubao Tablets drug-containing intestinal absorption solution. Drug targets were retrieved from SwissTargetPrediction databases. GeneCards was searched for the targets associated with the anti-inflammatory, vasodilation, and cardioprotective effects. The common targets shared by the drug and the effects were used to establish the protein-protein interaction(PPI) network, from which the core targets were obtained. Finally, the core targets were imported into Cytoscape 3.9.1 for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) analyses. The anti-inflammatory experiment showed that both Xinshubao Tablets and the single herbs constituting this formula had anti-inflammatory effects. Curcumae Radix had the strongest inhibitory effect on the production of tumor necrosis factor-α(TNF-α), and Salviae Miltiorrhizae Radix et Rhizoma had the strongest inhibitory effect on the generation of interleukin-6(IL-6). Xinshubao Tablets, Curcumae Radix, and Crataegi Fructus had vasodilation effect, and Crataegi Fructus had the strongest effect. Xinshubao Tablets, Salviae Miltiorrhizae Radix et Rhizoma, Acanthopanacis Senticosi Radix et Rhizoma seu Caulis, and Paeoniae Radix Alba had cardioprotective effects, and Salviae Miltiorrhizae Radix et Rhizoma had the strongest cardioprotective effect. Network pharmacology results demonstrated that except the whole formula, Salviae Miltiorrhizae Radix et Rhizoma had the most components with anti-inflammatory effect, and Curcumae Radix had the most components with vasodilation and cardioprotective effects, followed by Salviae Miltiorrhizae Radix et Rhizoma. The nitric oxide synthase 3(NOS3) was predicted as the core target for the anti-inflammatory, vasodilation, and cardioprotective effects. Western blot results showed that Xinshubao Tablets significantly up-regulated the expression of NOS3 in OGD-induced H9c2 cells. GO enrichment analysis showed that the effects were mainly related to lipid exported from cell, regulation of blood pressure, and inflammatory response. KEGG pathway enrichment predicted AGE-RAGE and HIF-1 signaling pathways as the key pathways.


Assuntos
Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/química , Farmacologia em Rede , Vasodilatação , Rizoma/química , Raízes de Plantas/química , Fator de Necrose Tumoral alfa , Medicina Tradicional Chinesa
4.
J Ethnopharmacol ; 321: 117438, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984544

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Angong Niuhuang Wan (AGNHW) is a prescription from traditional Chinese medicine (TCM) that has been used for centuries to treat ischemic stroke (IS) and hemorrhagic stroke (HS). According to a recent study, targeting ferroptosis might be effective in the management of IS and HS. However, the ferroptosis-related effects and mechanisms of AGNHW have not yet been reported. AIM OF THE STUDY: This research examines the anti-ferroptosis mechanisms of AGNHW in the treatment of IS and HS. MATERIALS AND METHODS: A system pharmacological approach including in vivo experiment, UHPLC-Q-Orbitrap HRMS, network pharmacology, molecular docking, microscale thermophoresis, and in vitro experiment was utilized to study the anti-ferroptosis mechanisms of AGNHW against IS and HS. RESULTS: In vivo experiments indicated that AGNHW enhanced nerve function, decreased cerebral infarct volume, ameliorated histological brain injuries, improved the structural integrity of the blood-brain barrier, ameliorated the mitochondrial dysfunction and morphology disruption, and inhibits ROS, LPO and Fe2+ accumulations in IS and HS rats. Using UHPLC-Q-Orbitrap HRMS, the key ingredients of AGNHW-containing serum were identified as bilirubin, berberine, baicalin, and wogonoside. According to the network pharmacology analyses, AGNHW could inhibit ferroptosis by modulating the PPAR and PI3K/AKT signaling pathways. The core targets are PPARγ, AKT, and GPX4. Molecular docking and microscale thermophoresis experiments further revealed that the key ingredients have strong interactions with ferroptosis-regulating core proteins. Moreover, in vitro experiment results showed that AGNHW alleviated ferroptosis injury induced by erastin in PC12 cells, increased cell viability, reduced the LPO and Fe2+ levels, and up-regulated mRNA expressions of PPARγ, AKT, and GPX4. AGNHW also up-regulated protein expressions of PPARγ, p-AKT/AKT, and GPX4 in IS and HS rats. CONCLUSIONS: AGNHW attenuated ferroptosis in treating IS and HS by targeting the PPARγ/AKT/GPX4 pathway. This work reveals AGNHW's anti-ferroptosis mechanism against IS and HS, but it also develops an integrated approach to demonstrate the common characteristics of drugs in treating different diseases.


Assuntos
Ferroptose , Acidente Vascular Cerebral Hemorrágico , AVC Isquêmico , Animais , Ratos , PPAR gama , Proteínas Proto-Oncogênicas c-akt , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , AVC Isquêmico/tratamento farmacológico
5.
J Ethnopharmacol ; 322: 117625, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145859

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Classical prescriptions are not only a primary method of clinical treatment in traditional Chinese medicine (TCM) but also represent breakthroughs in the inheritance and development of this field. Kuntai capsule (KTC), a formulation based on a classical prescription, comprises six TCMs: Rehmanniae Radix Praeparata, Coptidis Rhizoma, Paeoniae Radix Alba, Scutellariae Radix, Asini Corii Colla, and Poria. This formulation possesses various beneficial effects, such as nourishing yin and blood, clearing heat and purging fire, and calming the nerves and relieving annoyance. The investigation of the efficacy and mechanism of KTC in regulating anti-aging factors in the treatment of premature ovarian insufficiency (POI) is not only a prominent topic in classical prescription research but also a crucial issue in the treatment of female reproductive aging using TCM. AIM OF THE STUDY: To evaluate the therapeutic effect of KTC on POI and its underlying mechanism. MATERIALS AND METHODS: Healthy and specific pathogen-free (SPF) female Kunming mice aged 6-8 weeks were selected. After acclimatization, the mice were randomly divided into a control, model, and high, middle, and low dose groups of KTC (1.6, 0.8, and 0.4 mg/kg, respectively). Except for the control group, the animals in the other groups were administered a single intraperitoneal injection of 120 mg/kg cyclophosphamide and 30 mg/kg Busulfan to induce the model of POI. After modeling, the mice were treated with the corresponding drugs for 7 days. Serum and ovarian tissues were collected, and the levels of serum follicle-stimulating hormone (FSH), estradiol (E2), and superoxide dismutase 2 (SOD2) were determined using enzyme-linked immunosorbent assay (ELISA). The chemical composition of KTC was characterized and analyzed using ultra-high-pressure liquid chromatography-linear ion trap-Orbitrap tandem mass spectrometry. A "drug-component-target-pathway-disease" network was constructed using network pharmacology research methods to identify the key active components of KTC in treating POI and to elucidate its potential mechanism. The protein expression of the FOXO3/SIRT5 pathway was detected by western blotting. RESULTS: Compared to the model group, the high-dose group of KTC showed a significant increase in ovarian index, significant increase in levels of E2 and SOD2, and a significant decrease in FSH levels. Through systematic analysis of the chemical constituents of KTC, 69 compounds were identified, including 7 organic acids, 14 alkaloids, 28 flavonoids, 15 terpenoids, 2 lignans, 2 phenylpropanoids, and 1 sugar. Based on network pharmacology research methods, it was determined that KTC exerts its therapeutic effect on POI through multiple components (paeoniflorin and malic acid), multiple targets (FOXO3 and SIRT5), and multiple pathways (prolactin signaling pathway, longevity regulating pathway, and metabolic pathways). The accuracy of the network pharmacology prediction was further validated by detecting the protein expression of SIRT5 and FOXO3a, which showed a significant increase in the middle and high-dose groups of KTC compared to the model group. CONCLUSIONS: KTC may effectively treat POI through a multi-component, multi-target, multi-pathway approach, providing an experimental basis for using KTC based on classical prescriptions in the treatment of POI.


Assuntos
Medicamentos de Ervas Chinesas , Menopausa Precoce , Insuficiência Ovariana Primária , Sirtuínas , Camundongos , Humanos , Feminino , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Cromatografia Líquida de Alta Pressão/métodos , Insuficiência Ovariana Primária/tratamento farmacológico , Transdução de Sinais , Hormônio Foliculoestimulante , Proteína Forkhead Box O3
6.
J Ethnopharmacol ; 319(Pt 3): 117286, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37838292

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Migraine is caused by hyperactivity of the trigeminovascular system, where trigeminal ganglia (TG) plays an important role. TG is composed of multiple neuronal and non-neuronal cell types, which is related to "neuro-inflammation-vascular" disorder in migraine. Tou Tong Ning capsule (TTNC), a CFDA-approved traditional Chinese medicine for treating migraine, has the characteristics of "multicomponents, multitargets, multipathways". AIM OF THE STUDY: To clarify the mechanism of TTNC and elucidate crosstalk between multicomponent drugs and neuronal and non-neuronal functions and cells in migraine. MATERIALS AND METHODS: We integrated single-nucleus RNA sequencing and a quantitative evaluation algorithm of the disturbance of multitarget drugs on the disease network and explored the specific pathology of migraine and corresponding compounds. A cerebrovascular smooth muscle spasmolytic activity experiment was carried out to verify the results of the bioinformatics analysis. RESULTS: TTNC exhibited its regulation activities in neuronal and non-neuronal aspects based on drugs attack to four subnetworks and cell specific networks, which explored the MoA of TTNC in comprehensive and refined perspectives. Compared to neuronal regulation, TTNC showed more significant attack score on non-neuronal biological function (smooth muscle and vessel). And TTNC compound clusters C1, C6 and C7, targeting non-neuronal function and cells, had larger group area than C10, C4 and C6 for neuronal function and cell, which implied that TTNC may mainly regulate the non-neuronal function, e.g., vessel smooth muscle contraction. Contraction of cerebrovascular smooth muscle of mice ex vivo confirmed the vasodilation activity of TTNC and active compounds from C1, C6, C9 (Emodin, Luteolin and Levistilide A). Literature mining confirmed the vasospasmodolytic activity and neuroprotective effect of TTNC. CONCLUSIONS: The study found that TTNC may primarily alleviate non-neuronal functional disorders in migraine by relaxing cerebral vascular smooth muscle cell spasm to alleviate migraine. Integrating single-nucleus RNA sequencing data and network disturbance tools provides a new strategy for the pharmacological mechanism of multicomponent drugs through cell subtyping.


Assuntos
Transtornos de Enxaqueca , Gânglio Trigeminal , Animais , Camundongos , Fenômenos Fisiológicos Celulares , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/genética , Músculo Liso Vascular , Análise de Sequência de RNA
7.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5790-5797, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114174

RESUMO

Scutellariae Radix-Coptidis Rhizoma(SR-CR) herbal pair is commonly used in many compound prescriptions for their synergistic heat-clearing and dampness-drying properties. During the decoction process, a substantial amount of precipitate is generated. However, there have been no explicit reports on the composition, morphology, and potential effects of this precipitate on the in vivo behavior of SR-CR decoction. This study employed high-performance liquid chromatography(HPLC), high-resolution mass spectrometry, and other techniques to analyze the composition of the co-precipitate in the decoction of SR-CR. Scanning electron microscopy and mass spectrometry imaging were used to analyze its appearance and morphology. Additionally, rats were used to investigate the effects of the co-precipitate on the in vivo behavior of the main components in the SR-CR decoction. The research findings indicated that eight components, including coptisine, berberine, epiberberine, palmatine, baicalin, oroxylin A-7-O-ß-D-glucuronide, wogonoside and baicalein, constituted the primary composition of the co-precipitate. Among these, baicalin and berberine hydrochloride were the most abundant, accounting for about 60% of the total weight. Moreover, the co-precipitate contained 18% tannins. Morphological analysis revealed that the particles in the SR-CR decoction precipitate were spherical microparticles with an average diameter of around 600 nm. Pharmacokinetic research demonstrated that there were significant differences in the AUC, C_(max), t_(1/2), and T_(max) of baicalin, a major component, in rats administered with lyophilized powders of the combined decoction and single decoctions of SR-CR orally, suggesting that the precipitate generated during the decoction process can affect the in vivo behavior of the main components of the SR-CR decoction. It can reduce the absorption of baicalin in the body, decrease the extent of rapid drug release, and to a certain extent, prevent adverse reactions or side effects.


Assuntos
Berberina , Medicamentos de Ervas Chinesas , Ratos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Scutellaria baicalensis/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
8.
J Chromatogr A ; 1712: 464488, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37948772

RESUMO

Angong Niuhuang Pill (ANP) is a traditional Chinese medicine (TCM) formula with significant clinical efficacy in the treatment of stroke. Due to its complex composition, little attention has been directed toward the analysis of chemical composition and absorption characteristics of ANP. In this study, a reliable two-dimensional ultra-high-performance liquid chromatography (2D-UHPLC) coupled with quadrupole-Orbitrap high-resolution mass spectrometry (Q-Orbitrap HRMS) method was established to characterize the chemical constituents in ANP as well as the prototype components and metabolites absorbed in plasma, urine, feces, and brain tissues after oral administration. The prototype components were identified by a high mass accuracy (within 5 ppm) and MS/MS data based on online, local, and ANP self-built databases. The metabolites were predicted and identified using Compound Discoverer metabolic platform. A total of 154 compounds mainly including 37 flavonoids, 35 alkaioids, 19 organic acid, 19 bile acid, 32 terpenoids and 12 others were identified in this way. In addition, 60 prototype components mainly including flavonoids, alkaioids, organic acid, terpenoids and 164 metabolites were confirmed or preliminarily identified in rats. The metabolic pathways phase I reaction (hydration, reduction, oxidation, demethylation, and hydroxylation) and phase II reaction (acetylation, stearyl conjugation, and methylation) for the absorbed constituents were explored and summarized. This is the first systematic and comprehensive chemical characterization in ANP and its metabolism in vivo by 2D-UHPLC-Q-Orbitrap HRMS. This approach provides an effective strategy for the characterization of compounds and metabolites in traditional Chinese medicine formulas.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Flavonoides/análise , Terpenos/análise
9.
Heliyon ; 9(9): e20149, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810062

RESUMO

Acute lung injury (ALI) is a serious pulmonary complication that often arises from pneumonia, respiratory tract infections caused by bacteria or viruses, and other factors. It is characterized by acute onset and high mortality. Angong Niuhuang Wan (AGNHW) is a renowned emergency medicine in traditional Chinese medicine, known as the "cool open (febrile disease) three treasures" and regarded as the first of the "three treasures". Previously studies have confirmed that AGNHW has anti-inflammatory effects, improves cerebral circulation, reduces brain edema, and protects vascular endothelium. However, the active components and pharmacological mechanisms of AGNHW in treating ALI remain unclear. In this study, we confirmed that AGNHW can inhibit cytokine storm activity and reduce inflammation induced by LPS in ALI mice. We then analyzed differential proteins using proteomic technology and identified 741 differential proteins. By combining network pharmacological analysis, we deeply discussed the key active components and mechanism of AGNHW in treating ALI. By constructing the interaction network between disease and drug, we identified 21 key active components (such as Quercetin, Kaempferol, and Crocetin) and 25 potential core targets (such as PIK3CG, p65, and MMP9). These candidate targets play an important role in anti-inflammation and immune regulation. Through enrichment analysis of core targets, we found several pathways related to ALI, such as the NF-κB signaling pathway, TNF signaling pathway, and Toll-like receptor signaling pathway. This indicates that AGNHW plays a therapeutic role in ALI through multi-components, multi-targets, and multi-pathways.

10.
Biomed Pharmacother ; 167: 115555, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776639

RESUMO

BACKGROUND: A cytokine storm (CS) is a rapidly occurring, complex, and highly lethal systemic acute inflammatory response induced by pathogens and other factors. Currently, no clinical therapeutic drugs are available with a significant effect and minimal side effects. Given the pathogenesis of CS, natural products have become important resources for bioactive agents in the discovery of anti-CS drugs. PURPOSE: This study aimed to provide guidance for preventing and treating CS-related diseases by reviewing the natural products identified to inhibit CS in recent years. METHODS: A comprehensive literature review was conducted on CS and natural products, utilizing databases such as PubMed and Web of Science. The quality of the studies was evaluated and summarized for further analysis. RESULTS: This study summarized more than 30 types of natural products, including 9 classes of flavonoids, phenols, and terpenoids, among others. In vivo and in vitro experiments demonstrated that these natural products could effectively inhibit CS via nuclear factor kappa-B, mitogen-activated protein kinase, and Mammalian target of rapamycin (mTOR) signaling pathways. Moreover, the enzyme inhibition assays revealed that more than 20 chemical components had the potential to inhibit ACE2, 3CL-protease, and papain-like protease activity. The experimental results were obtained using advanced technologies such as biochips and omics. CONCLUSIONS: Various natural compounds in traditional Chinese medicine (TCM) extracts could directly or indirectly inhibit CS occurrence, potentially serving as effective drugs for treating CS-related diseases. This study may guide further exploration of the therapeutic effects and biochemical mechanisms of natural products on CS.

11.
Phytother Res ; 37(12): 5932-5946, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37697496

RESUMO

BACKGROUND AND AIM: Acute myocardial infarction (AMI) is a multifactorial disease with high mortality rate worldwide. Ethanol extract of Pueraria lobata (EEPL) has been widely used in treating cardiovascular diseases in China. This study aimed to explore the underlying therapeutic mechanism of EEPL in AMI rats. EXPERIMENTAL PROCEDURE: We first evaluated the anti-AMI efficacy of EEPL through immunohistochemistry staining and biochemical indexes. Then, UPLC-MS/MS, 16S rDNA, and shotgun metagenomic sequencing were used to analyze the alterations in bile acid metabolism and intestinal flora. Finally, the influence of EEPL on ilem bile acid metabolism, related enzymes expression, and transporter proteins expression in rats were verified by mass spectrometry image and ELISA. KEY RESULTS: The results showed that EEPL can reduce cardiac impairment in AMI rats. Besides, EEPL effectively increased bile acid levels and regulated gut microbiota disturbance in AMI rats via increasing CYP7A1 expression and restoring intestinal microbiota diversity, separately. Moreover, it can increase bile acids reabsorption and fecal excretion through inhibiting FXR-FGF15 signaling pathway and increasing OST-α expression, which associated with Lachnoclostridium. CONCLUSIONS AND IMPLICATIONS: Our findings demonstrated that EEPL alleviated AMI partially by remediating intestinal dysbiosis and promoting bile acid biosynthesis, which provided new targets for AMI treatment.


Assuntos
Microbioma Gastrointestinal , Infarto do Miocárdio , Pueraria , Ratos , Animais , Etanol , Cromatografia Líquida , Espectrometria de Massas em Tandem , Infarto do Miocárdio/tratamento farmacológico , Extratos Vegetais/farmacologia , Ácidos e Sais Biliares
12.
Biomed Pharmacother ; 165: 115119, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37423168

RESUMO

Traditional Chinese medicine offer unique advantages in mitigating and preventing early or intermediate stage for treating heart failure (HF). The purpose of this study was to assess the in vivo therapeutic efficacy of Xin-shu-bao (XSB) at different stages of HF following induction of a myocardial infarction (MI) in mice and use mass spectrometry-based proteomics to identify potential therapeutic targets for different stages of HF based on the molecular changes following XSB treatment. XSB had high cardioprotective efficacy in the pre-HF with reduced ejection fraction (HFrEF) stages, but had a weak or no effect in the post-HFrEF stages. This was supported by echocardiographic measurements showing that XSB decreased ejection fraction and fractional shortening in HF. XSB administration improved cardiac function in the pre- and post-HFrEF mouse model, ameliorated deleterious changes to the morphology and subcellular structure of cardiomyocytes, and reduced cardiac fibrosis. Proteomics analysis showed that XSB intervention exclusively targeted thrombomodulin (THBD) and stromal interaction molecule 1 (STIM1) proteins when administered to the mice for both 8 and 6 weeks. Furthermore, XSB intervention for 8, 6, and 4 weeks after MI induction increased the expression of fibroblast growth factor 1 (FGF1) and decreased arrestin ß1 (ARRB1), which are classic biomarkers of cardiac fibroblast transformation and collagen synthesis, respectively. Overall, the study suggests that early intervention with XSB could be an effective strategy for preventing HFrEF and highlights potential therapeutic targets for further investigation into HFrEF remediation strategies.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Camundongos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Volume Sistólico , Fator 1 de Crescimento de Fibroblastos/metabolismo , Arrestina/metabolismo , Molécula 1 de Interação Estromal , Trombomodulina , Infarto do Miocárdio/tratamento farmacológico
13.
Acta Pharm Sin B ; 13(6): 2559-2571, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37425046

RESUMO

Existing traditional Chinese medicine (TCM)-related databases are still insufficient in data standardization, integrity and precision, and need to be updated urgently. Herein, an Encyclopedia of Traditional Chinese Medicine version 2.0 (ETCM v2.0, http://www.tcmip.cn/ETCM2/front/#/) was constructed as the latest curated database hosting 48,442 TCM formulas recorded by ancient Chinese medical books, 9872 Chinese patent drugs, 2079 Chinese medicinal materials and 38,298 ingredients. To facilitate the mechanistic research and new drug discovery, we improved the target identification method based on a two-dimensional ligand similarity search module, which provides the confirmed and/or potential targets of each ingredient, as well as their binding activities. Importantly, five TCM formulas/Chinese patent drugs/herbs/ingredients with the highest Jaccard similarity scores to the submitted drugs are offered in ETCM v2.0, which may be of significance to identify prescriptions/herbs/ingredients with similar clinical efficacy, to summarize the rules of prescription use, and to find alternative drugs for endangered Chinese medicinal materials. Moreover, ETCM v2.0 provides an enhanced JavaScript-based network visualization tool for creating, modifying and exploring multi-scale biological networks. ETCM v2.0 may be a major data warehouse for the quality marker identification of TCMs, the TCM-derived drug discovery and repurposing, and the pharmacological mechanism investigation of TCMs against various human diseases.

14.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1976-1981, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37282974

RESUMO

Fracture is one of the common diseases in the department of orthopaedics and traumatology. Jiegu Qili Tablets(Capsules) are a Chinese patent medicine commonly used to treat fractures in clinical practice, which has been included in the Class A drugs of the catalog of medicines covered by the National Medical Insurance System. However, no consensus or guideline has yet been developed to guide clinicians based on an evidence-based approach in detail, which has severely limited the clinical value of this drug. According to the guiding principle of evidence as the key, consensus as the supplement, and experience as the reference, a consensus was developed in strict accordance with the steps stipulated in the expert consensus on clinical applications of proprietary Chinese medicines. Based on literature review and questionnaire survey, the consensus was a timely summary of the existing clinical evidence on the treatment of fractures with Jiegu Qili Tablets(Capsules), and incorporated the treatment experience of a number of clinical experts. The preparation process took more than a year and the consensus(GS/CACM 293-2021) was officially released by the China Association of Chinese Medicine in September 2021, with the participation of multidisciplinary experts from 27 organizations of Chinese and Western medicine and research institutions. This article introduces the background and objectives of the consensus in detail, and describes the main process of proposal, drafting, expert consensus, and consultation. In particular, 5 consensus recommendations and 12 consensus suggestions are formed with regard to the key issues of indications, treatment timing, dose, duration, and safety in the clinical application of Jiegu Qili Tablets(Capsules) for the treatment of fractures, which guide and standardize the rational use by clinicians and improve the accuracy and safety of drugs.


Assuntos
Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/uso terapêutico , Cápsulas , Medicina Tradicional Chinesa , Consenso , Comprimidos , China
15.
Phytomedicine ; 116: 154849, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163903

RESUMO

BACKGROUND: Cardiac fibrosis contributes to myocardial remodeling after myocardial infarction (MI), which may facilitate the progression to end-stage heart failure. Dengzhan Shengmai capsule (DZSMC), a traditional Chinese formula derived from Shen-mai powder, has shown remarkable therapeutic effects against cardiovascular diseases. However, the effect of DZSMC on cardiac fibrosis and its potential mechanism are ill-defined. PURPOSE: To evaluate the effects of DZSMC on cardiac fibrosis after myocardial infarction (MI) and investigate its underlying mechanism. METHOD: In vivo, MI rat models were established by permanently ligation of left anterior descending coronary arteries (LAD) and then were intragastrically treated with DZSMC or captopril for 5 weeks. Ex vivo, an everted intestinal sac model was used to study the intestinal absorption components of DZSMC, which were further identified through an ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS) method. In vitro, a myocardium fibrotic model was constructed by stimulating primary cardiac fibroblasts (CFs) with 1 µM Ang II. Subsequently, the absorbent solution of DZSMC from the intestinal sac was performed on the cell models to further elucidate its anti-fibrotic effects and underling mechanism. RESULTS: In vivo results showed that DZSMC significantly improved cardiac function and inhibited pathological myocardial fibrosis in post-MI rats in a dose dependent manner. Histological analysis and western blot results demonstrated that DZSMC treatment significantly reduced the expression of extracellular matrix (ECM)-related proteins, including LTBP2, TGF-ßR1, Smad3 and pSmad3, in myocardial tissue of MI rats. Ex vivo results showed that 18 absorbed components were identified, mainly consisting of phenolic acids, flavonoids and lignans, which may be responsible for the anti-fibrotic effects. Further in vitro results validated that DZSMC attenuated myocardial fibrosis by suppressing the expression of LTBP2, TGF-ß1 and pSmad3. CONCLUSION: DZSMC ameliorates cardiac function and alleviates cardiac fibrosis, which may be mediated by inhibition of CFs activation and reduction of excessive ECM deposition via LTBP2 and TGF-ß1/Smad3 pathways.


Assuntos
Infarto do Miocárdio , Fator de Crescimento Transformador beta1 , Ratos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Fibrose
16.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1381-1392, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-37005821

RESUMO

Angong Niuhuang Pills, a classical formula in traditional Chinese medicine, are lauded as one of the "three treasures of febrile diseases" and have been widely used in the treatment of diverse disorders with definite efficacy. However, there is still a lack of bibliometric analysis of research progress and development trend regarding Angong Niuhuang Pills. Research articles on Angong Niuhuang Pills in China and abroad(2000-2022) were retrieved from CNKI and Web of Science. CiteSpace 6.1 was used to visualize the key contents of the research articles. In addition, the research status of Angong Niuhuang Pills was analyzed by information extraction to allow insight into the research trends and hotspots about Angong Niuhuang Pills. A total of 460 Chinese articles and 41 English articles were included. Beijing University of Chinese Medicine and Sun Yat-Sen University were the research institutions that have published the largest amount of research articles in Chinese and English. The keyword analysis showed that the Chinese articles focused on cerebral hemorrhage, stroke, neurological function, coma, cerebral infarction, craniocerebral injury, and clinical application, while the English articles focused on the mechanisms of cerebral ischemia, stroke, heavy metal, blood-brain barrier, and oxidative stress. Stroke, blood-brain barrier, and oxidative stress were presumably the research hotspots in the future. At present, the research on Angong Niuhuang Pills is still in the developing stage. It is necessary to highlight the in-depth research on the active components and mechanism of action and carry out large-scale randomized controlled clinical trials to provide references for the further development and application of Angong Niuhuang Pills.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Acidente Vascular Cerebral , Humanos , Medicamentos de Ervas Chinesas/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Medicina Tradicional Chinesa , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral/tratamento farmacológico
17.
Front Pharmacol ; 14: 1175970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101548

RESUMO

Dengzhan Shengmai (DZSM), a traditional Chinese medicine formulation, has been administered extensively to elderly individuals with cognitive impairment (CI). However, the underlying mechanisms by which Dengzhan Shengmai improves cognitive impairment remains unknown. This study aimed to elucidate the underlying mechanism of the effect of Dengzhan Shengmai on aging-associated cognitive impairment via a comprehensive combination of transcriptomics and microbiota assessment. Dengzhan Shengmai was orally administered to a D-galactose-induced aging mouse model, and evaluation with an open field task (OFT), Morris water maze (MWM), and histopathological staining was performed. Transcriptomics and 16S rDNA sequencing were applied to elucidate the mechanism of Dengzhan Shengmai in alleviating cognitive deficits, and enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (PCR), and immunofluorescence were employed to verify the results. The results first confirmed the therapeutic effects of Dengzhan Shengmai against cognitive defects; specifically, Dengzhan Shengmai improved learning and impairment, suppressed neuro loss, and increased Nissl body morphology repair. Comprehensive integrated transcriptomics and microbiota analysis indicated that chemokine CXC motif receptor 4 (CXCR4) and its ligand CXC chemokine ligand 12 (CXCL12) were targets for improving cognitive impairments with Dengzhan Shengmai and also indirectly suppressed the intestinal flora composition. Furthermore, in vivo results confirmed that Dengzhan Shengmai suppressed the expression of CXC motif receptor 4, CXC chemokine ligand 12, and inflammatory cytokines. This suggested that Dengzhan Shengmai inhibited CXC chemokine ligand 12/CXC motif receptor 4 expression and modulated intestinal microbiome composition by influencing inflammatory factors. Thus, Dengzhan Shengmai improves aging-related cognitive impairment effects via decreased CXC chemokine ligand 12/CXC motif receptor 4 and inflammatory factor modulation to improve gut microbiota composition.

18.
J Ethnopharmacol ; 311: 116439, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37004745

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ischemic stroke is one of the leading causes of mortality, but therapies are limited. Dengzhan Shengmai capsule (DZSM) was included by the Chinese Pharmacopoeia 2020 and has been broadly used for the treatment of ischemic stroke. However, the mechanism of DZSM against ischemic stroke is unclear. AIM OF THE STUDY: This study used RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) to investigate the mechanism of action of DZSM against ischemic stroke. MATERIALS AND METHODS: The rats were randomly divided into six groups: the Sham, I/R (water), I/R + DZSM-L (0.1134g/kg), I/R + DZSM-H (0.4536g/kg), I/R + NMDP (20mg/kg), and I/R + Ginaton (20mg/kg). The rats were administrated drugs for 5 days then followed by the ischemic brain injury caused by middle cerebral artery occlusion (MCAO). The neuroprotective effect was assessed by infraction rate, neurological deficit scores, regional cerebral blood flow (rCBF), hematoxylin and eosin (H&E) staining, and Nissl staining. Based on RNA-seq and scRNA-seq, the vital biological processes and core targets of DZSM against cerebral ischemia were revealed. Enzyme-linked immunosorbent assay (ELISA) and immunofluorescence (IF) staining were used to investigate the vital biological processes and core targets of DZSM against ischemic stroke. RESULTS: Administration of DZSM significantly reduced the infarction rate and Zea Longa score, Garcia JH score, and ameliorated the reduction in rCBF. And alleviated the neuronal damage, such as increased neuronal density level and Nissl bodies density level. RNA-seq analysis revealed that DZSM played important roles in inflammation and apoptosis. ELISA and IF straining validation confirmed that DZSM significantly decreased the expression of IL-6, IL-1ß, TNF-α, ICAM-1, IBA-1, MMP9, and Cleaved caspase-3 in MCAO rats. ScRNA-seq analysis identified 8 core targets in neurons including HSPB1, SPP1, MT2A, GFAP, IFITM3, VIM, CRIP1, and GPD1, and VIM and IFITM3 was verified to be decreased by DZSM in neurons. CONCLUSION: Our study illustrates the neuroprotective effect of DZSM against ischemia stroke, and VIM and IFITM3 were identified as vital targets in neurons of DZSM in protecting against MCAO-induced I/R injury.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Ratos , Animais , Acidente Vascular Cerebral/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico
19.
Int Immunopharmacol ; 117: 109888, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36827918

RESUMO

Nucleotides (NTs) play a pivotal role in the growth and development of the intestine. This study aimed to evaluate the effects of nucleotides supplementation on the intestinal barrier function, immune responses and microbiota in 3-day-old weaned piglets. Ninety-six piglets weaned at 3-days after birth were randomly assigned to 2 treatments (6 replicates/treatment, 8 piglets/replicate) according to the average body weight. The dietary treatments consisted of the control (CON; fed a basal artificial milk) and nucleotides groups (NT; fed a basal artificial milk with 0.035 % nucleotides, the contents of CMP, UMP, AMP, GMP, and IMP were 1:1:1:1:1, respectively). Diarrhea rates were recorded, and blood and intestinal samples were collected on day 35 of the piglets. The current study showed that NTs supplementation tended to decrease the diarrhea rate of weaned piglets (P < 0.10). NTs increased villus height and the villus height-to-crypt depth (V/C) ratio in the ileum (P < 0.05). Dietary NTs up-regulated protein expression of ZO-1 in ileal mucosa (P < 0.05), and the protein expression of Occludin tended to increase. Furthermore, NTs up-regulated the mRNA expression of Mucin (MUC)2, while the mRNA expression of MUC4 was down-regulated in the ileal mucosa (P < 0.05). Besides, supplementation with NTs increased the ileal mucosa genes expression of IL-21, INF-γ, IL-10, IL-4, IL-6 and TNF-α (P < 0.05). Furthermore, dietary NTs increased the protein expression of NF-κB, IL-6 and TNF-α (P < 0.05), and the proteins expression of Occludin and p-NF-κB tended to be up-regulated in the ileal mucosa (P < 0.10). Furthermore, NTs supplementation increased short chain fatty acid in the colonic (P < 0.05). And NTs supplementation reduced the Firmicutes/Bacteroidota ratio in the colon, at the genus level, NTs enriched the relative abundance of Prevotella, Faecalibacterium and Olsenella (P < 0.05). These data indicate that NTs could increase the villus height, increase the V/C, regulate the expression of tight junction protein and mucin, improve the intestinal barrier of piglets, regulate the secretion of cytokines, improve the biological immunity, increase the abundance of beneficial bacteria, and thus reduce the diarrhea of piglets.


Assuntos
Suplementos Nutricionais , Microbiota , Animais , Diarreia/metabolismo , Suplementos Nutricionais/análise , Imunidade , Interleucina-6/metabolismo , Mucosa Intestinal , Mucinas/metabolismo , NF-kappa B/metabolismo , Nucleotídeos/metabolismo , Ocludina/genética , Ocludina/metabolismo , RNA Mensageiro/metabolismo , Suínos , Fator de Necrose Tumoral alfa/metabolismo , Desmame
20.
Phytomedicine ; 109: 154549, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610129

RESUMO

BACKGROUND: Acute lung injury (ALI) is a common complication of sepsis with poor effective interventions. Huashibaidu formula (HSBD) showed good therapeutic effects in treating coronavirus disease 2019 (COVID-19) patients. PURPOSE: This study was designed to investigate the therapeutic potential and precise mechanism of HSBD against sepsis-induced ALI based on network pharmacology and animal experiments. MATERIALS AND METHODS: Network pharmacology was used to predict the possible mechanism of HSBD against sepsis. Next, a sepsis-induced ALI rat model via intraperitoneal lipopolysaccharide (LPS) was constructed to evaluate the level of inflammatory cytokines and the degree of lung injury. The expression of inflammation-related signaling pathways, including TLR4/NF-κB and PI3K/Akt was determined by western blot. RESULTS: Network pharmacology analysis indicated that HSBD might have a therapeutic effect on sepsis mainly by affecting inflammatory and immune responses. Animal experiments demonstrated that HSBD protected the lung tissue from LPS-induced injury, and inhibited the levels of inflammatory cytokines such as interleukin (IL)-1ß, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-γ and tumor necrosis factor (TNF)-α in the serum and IL-1ß, IL-5, IL-6, IL-18, GM-CSF, IFN-γ and TNF-α in the lung tissue. Western blot results revealed that HSBD downregulated the expression of TLR4/NF-κB and upregulated the expression of PI3K/Akt. CONCLUSION: The therapeutic mechanism of HSBD against sepsis-induced ALI mainly involved suppressing cytokine storms and relieving inflammatory symptoms by regulating the expression of TLR4/NF-κB and PI3K/Akt. Our study provides a scientific basis for the mechanistic investigation and clinical application of HSBD in the treatment of sepsis and COVID-19.


Assuntos
Lesão Pulmonar Aguda , Síndrome da Liberação de Citocina , Sepse , Animais , Ratos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , COVID-19 , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/virologia , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA