Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 819
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Phytother Res ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558446

RESUMO

Bone is one of the most frequent sites for metastasis in breast cancer patients. Bone metastasis significantly reduces the survival time and the life quality of breast cancer patients. Germacrone (GM) can serve humans as an anti-cancer and anti-inflammation agent, but its effect on breast cancer-induced osteolysis remains unclear. This study aims to investigate the functions and mechanisms of GM in alleviating breast cancer-induced osteolysis. The effects of GM on osteoclast differentiation, bone resorption, F-actin ring formation, and gene expression were examined in vitro. RNA-sequencing and Western Blot were conducted to explore the regulatory mechanisms of GM on osteoclastogenesis. The effects of GM on breast cancer-induced osteoclastogenesis, and breast cancer cell malignant behaviors were also evaluated. The in vivo efficacy of GM in the ovariectomy model and breast cancer bone metastasis model with micro-CT and histomorphometry. GM inhibited osteoclastogenesis, bone resorption and F-actin ring formation in vitro. Meanwhile, GM inhibited the expression of osteoclast-related genes. RNA-seq analysis and Western Blot confirmed that GM inhibited osteoclastogenesis via inhibition of MAPK/NF-κB signaling pathways. The in vivo mouse osteoporosis model further confirmed that GM inhibited osteolysis. In addition, GM suppressed the capability of proliferation, migration, and invasion and promoted the apoptosis of MDA-MB-231 cells. Furthermore, GM could inhibit MDA-MB-231 cell-induced osteoclastogenesis in vitro and alleviate breast cancer-associated osteolysis in vivo human MDA-MB-231 breast cancer bone metastasis-bearing mouse models. Our findings identify that GM can be a promising therapeutic agent for patients with breast cancer osteolytic bone metastasis.

2.
Ying Yong Sheng Tai Xue Bao ; 35(3): 631-638, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646750

RESUMO

Litter input triggers the secretion of soil extracellular enzymes and facilitates the release of carbon (C), nitrogen (N), and phosphorus (P) from decomposing litter. However, how soil extracellular enzyme activities were controlled by litter input with various substrates is not fully understood. We examined the activities and stoichiometry of five enzymes including ß-1,4-glucosidase, ß-D-cellobiosidase, ß-1,4-N-acetyl-glucosaminidase, leucine aminopeptidase and acidic phosphatase (AP) with and without litter input in 10-year-old Castanopsis carlesii and Cunninghamia lanceolata plantations monthly during April to August, in October, and in December 2021 by using an in situ microcosm experiment. The results showed that: 1) There was no significant effect of short-term litter input on soil enzyme activity, stoichiometry, and vector properties in C. carlesii plantation. In contrast, short-term litter input significantly increased the AP activity by 1.7% in May and decreased the enzymatic C/N ratio by 3.8% in August, and decreased enzymatic C/P and N/P ratios by 11.7% and 10.3%, respectively, in October in C. lanceolata plantation. Meanwhile, litter input increased the soil enzymatic vector angle to 53.8° in October in C. lanceolata plantations, suggesting a significant P limitation for soil microorganisms. 2) Results from partial least squares regression analyses showed that soil dissolved organic matter and microbial biomass C and N were the primary factors in explaining the responses of soil enzymatic activity to short-term litter input in both plantations. Overall, input of low-quality (high C/N) litter stimulates the secretion of soil extracellular enzymes and accelerates litter decomposition. There is a P limitation for soil microorganisms in the study area.


Assuntos
Carbono , Cunninghamia , Fagaceae , Nitrogênio , Fósforo , Microbiologia do Solo , Solo , Solo/química , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/metabolismo , Carbono/metabolismo , Carbono/análise , Nitrogênio/metabolismo , Nitrogênio/análise , Fósforo/metabolismo , Fósforo/análise , Fagaceae/crescimento & desenvolvimento , Fagaceae/metabolismo , Leucil Aminopeptidase/metabolismo , Celulose 1,4-beta-Celobiosidase/metabolismo , Ecossistema , Folhas de Planta/metabolismo , Folhas de Planta/química , Acetilglucosaminidase/metabolismo , Fosfatase Ácida/metabolismo , beta-Glucosidase/metabolismo , China
3.
Int Immunopharmacol ; 132: 111981, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565039

RESUMO

Cordycepin (CRD) is an active component derived from Cordyceps militaris, which possesses multiple biological activities and uses in liver disease. However, whether CRD improves liver fibrosis by regulating hepatic stellate cell (HSC) activation has remained unknown. The study aims further to clarify the activities of CRD on liver fibrosis and elucidate the possible mechanism. Our results demonstrated that CRD significantly relieved hepatocyte injury and inhibited HSC activation, alleviating hepatic fibrogenesis in the Diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate (DDC)-induced mice model. In vitro, CRD exhibited dose-dependent repress effects on HSC proliferation, migration, and pro-fibrotic function in TGF-ß1-activated LX-2 and JS-1 cells. The functional enrichment analysis of RNA-seq data indicated that the pathway through which CRD alleviates HSC activation involves cellular senescence and cell cycle-related pathways. Furthermore, it was observed that CRD accumulated the number of senescence-associated a-galactosidase positive cells and the levels of senescencemarker p21, and provoked S phasearrestof activated HSC. Remarkably, CRD treatment abolished TGF-ß-induced yes-associated protein (YAP) nuclear translocation that acts upstream of glutaminolysis in activated HSC. On the whole, CRD significantly inhibited glutaminolysis of activated-HSC and induced cell senescence through the YAP signaling pathway, consequently alleviating liver fibrosis, which may be a valuable supplement for treating liver fibrosis.


Assuntos
Senescência Celular , Desoxiadenosinas , Células Estreladas do Fígado , Cirrose Hepática , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Animais , Senescência Celular/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Desoxiadenosinas/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Camundongos , Masculino , Humanos , Camundongos Endogâmicos C57BL , Proliferação de Células/efeitos dos fármacos , Linhagem Celular , Proteínas de Sinalização YAP/metabolismo , Modelos Animais de Doenças , Fator de Crescimento Transformador beta1/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo
4.
Foods ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611372

RESUMO

Kaempferol is a natural flavonoid with reported bioactivities found in many fruits, vegetables, and medicinal herbs. However, its effects on exercise performance and muscle metabolism remain inconclusive. The present study investigated kaempferol's effects on improving exercise performance and potential mechanisms in vivo and in vitro. The grip strength, exhaustive running time, and distance of mice were increased in the high-dose kaempferol group (p < 0.01). Also, kaempferol reduced fatigue-related biochemical markers and increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) related to antioxidant capacity. Kaempferol also increased the glycogen and adenosine triphosphate (ATP) content in the liver and skeletal muscle, as well as glucose in the blood. In vitro, kaempferol promoted glucose uptake, protein synthesis, and mitochondrial function and decreased oxidative stress in both 2D and 3D C2C12 myotube cultures. Moreover, kaempferol activated the PI3K/AKT and MAPK signaling pathways in the C2C12 cells. It also upregulated the key targets of glucose uptake, mitochondrial function, and protein synthesis. These findings suggest that kaempferol improves exercise performance and alleviates physical fatigue by increasing glucose uptake, mitochondrial biogenesis, and protein synthesis and by decreasing ROS. Kaempferol's molecular mechanism may be related to the regulation of the PI3K/AKT and MAPK signaling pathways.

5.
J Ethnopharmacol ; 330: 118102, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561057

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoqinglong Decotion (XQLD) is a commonly used Chinese herbal formula in clinical practice, especially for allergic diseases such as asthma. However, its intrinsic mechanism for the treatment of neutrophilic asthma (NA) remains unclear. AIM OF THE STUDY: The aim of this study was to evaluate the efficacy and potential mechanisms of XQLD on NA using network pharmacology and in vivo experiments. MATERIALS AND METHODS: First, the active compounds, potential targets and mechanisms of XQLD against NA were initially elucidated by network pharmacology. Then, OVA/CFA-induced NA mice were treated with XQLD to assess its efficacy. Proteins were then analyzed and quantified using a Tandem Mass Tags approach for differentially expressed proteins (DEPs) to further reveal the mechanisms of NA treatment by XQLD. Finally, the hub genes, critical DEPs and potential pathways were validated. RESULTS: 176 active compounds and 180 targets against NA were identified in XQLD. Protein-protein interaction (PPI) network revealed CXCL10, CX3CR1, TLR7, NCF1 and FABP4 as hub genes. In vivo experiments showed that XQLD attenuated inflammatory infiltrates, airway mucus secretion and remodeling in the lungs of NA mice. Moreover, XQLD significantly alleviated airway neutrophil inflammation in NA mice by decreasing the expression of IL-8, MPO and NE. XQLD also reduced the levels of CXCL10, CX3CR1, TLR7, NCF1 and FABP4, which are closely associated with neutrophil inflammation. Proteomics analysis identified 28 overlapping DEPs in the control, NA and XQLD groups, and we found that XQLD inhibited ferroptosis signal pathway (elevated GPX4 and decreased ASCL3) as well as the expression of ARG1, MMP12 and SPP1, while activating the Rap1 signaling pathway. CONCLUSION: This study revealed that inhibition of ARG1, MMP12 and SPP1 expression as well as ferroptosis pathways, and activation of the Rap1 signaling pathway contribute to the therapeutic effect of XQLD on NA.


Assuntos
Asma , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Proteômica , Animais , Asma/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Mapas de Interação de Proteínas , Feminino , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Camundongos Endogâmicos BALB C , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Antiasmáticos/farmacologia , Modelos Animais de Doenças , Ovalbumina , Masculino
6.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1421-1428, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621925

RESUMO

To investigate the mechanism of action of aqueous extract of Strychni Semen(SA) on bone destruction in rats with type Ⅱ collagen-induced arthritis(CIA), the SD rats were randomly divided into normal group, model group, low, medium, and high dose(2.85, 5.70, and 11.40 mg·kg~(-1)) groups of SA, and methotrexate group. Except for the normal group, the CIA model was prepared for the other groups. After the second immunization, different doses of SA were given to the low, medium, and high dose groups of SA once a day, and the methotrexate group was given once every three days. 0.3% sodium hydroxymethylcellulose(CMC-Na) was given once a day to the normal and model groups for 28 d. The clinical score of arthritis was evaluated every three days. Micro computed tomography(Micro-CT) method was used to evaluate the degree of bone destruction. Histopathological changes in the joint tissue and the number of osteoclasts in CIA rats were evaluated by hematoxylin-eosin(HE) staining and tartrate-resistant acid phosphatase(TRAP) staining. The expression of interleukin-1ß(IL-1ß) in the joint tissue of rats was detected by immunohistochemistry. Western blot was used to detect key protein expression in mitogen-activated protein kinase(MAPK) and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) signaling pathways in the joint tissue of rats. The results showed that different doses of SA were able to improve the red and swollen inflammatory joint and joint deformity in CIA rats to varying degrees, reduce the clinical score, inhibit synovial inflammation, vascular opacification, cartilage erosion, and bone destruction, and reduce the number of TRAP-positive cells in bone tissue. Micro-CT results showed that the SA was able to increase bone mineral density, bone volume fraction, trabecular reduce, and trabecular number and reduce bone surface/bone volume and trabecular separation/spacing. Different doses of SA could down-regulate the protein expression of IL-1ß, p-JNK, p-ERK, p-p38, PI3K, and p-Akt to varying degrees. In conclusion, SA can improve disease severity, attenuate histopathological and imaging changes in joints, and have osteoprotective effects in CIA rats, and its mechanism of action may be related to the inhibition of the overactivation of MAPK and PI3K/Akt signaling pathways.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Colágeno Tipo II , Metotrexato , Proteínas Proto-Oncogênicas c-akt , Sêmen , Microtomografia por Raio-X , Fosfatidilinositol 3-Quinases , Ratos Sprague-Dawley , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/induzido quimicamente
7.
Lab Chip ; 24(8): 2280-2286, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38506153

RESUMO

Concentration gradient generation and mixed combinations of multiple solutions are of great value in the field of biomedical research. However, existing concentration gradient generators for single or two-drug solutions cannot simultaneously achieve multiple concentration gradient formations and mixed solution combinations. Furthermore, the whole system was huge, and required expensive auxiliary equipment, which may lead to complex operations. To address this problem, we devised a novel 3D microchannel network design, which is capable of creating all the desired mixture combinations and concentration gradients of given small amounts of the input solutions. As a proof of concept, the device we presented was verified by both colorimetric and fluorescence detection methods to test the efficiency. This can enable the implementation of one to three solutions with no driving pump and facilitate unique multiple types of more concentration gradients and mixture combinations in a single operation. We envision that this will be a promising candidate for the development of simplified methods for screening of the appropriate concentration and combination, such as various drug screening applications.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Avaliação Pré-Clínica de Medicamentos
8.
Int J Biol Macromol ; 264(Pt 1): 130537, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432275

RESUMO

This study aimed to investigate the structural characteristics, in vivo antiatherosclerosis activity, and in vitro myocardial injury protection effects of polysaccharides from Allium macrostemon Bunge and Allium chinense G. Don. Thus, crude polysaccharides of Allium macrostemon Bunge and Allium chinense G. Don significantly reduced serum lipid levels, improved cardiac myocyte morphology and arrangement, and relieved the development of myocardial fibrosis. Meanwhile, the lesion areas of the aorta and aortic valve had evident visual improvements. Furthermore, two main novel purified polysaccharides, namely, AMB-1 and ACGD-1, were isolated and characterized from crude Allium macrostemon Bunge and Allium chinense G. Don fractions, respectively. The purified polysaccharides mainly consisted of fructose and glucose and had molecular weights of 25.22 and 19.53 kDa, respectively. In addition, Fourier transform infrared spectroscopy, methylation, and nuclear magnetic resonance data revealed the primary structures of the AMB1 (or ACGD1) backbone with branched side chains. Scanning electron microscope analysis showed that the purified polysaccharides were both piled together in a lamellar or clastic form with a smooth surface along with linear or irregular bulges. Moreover, the purified polysaccharides both showed nontoxicity on H9c2 cells and effectively dropped hypoxia/reoxygenation-induced apoptosis by the BCL-2/BAX pathway. Overall, the characterization of the structural properties and in vivo and in vitro myocardial injury protection effects of Allium macrostemon Bunge and Allium chinense G. Don polysaccharides enriched our understanding of their nutritional and medicinal values. To the best of our knowledge, this is the first study on the structural characteristics and bioactivities of Allium chinense G. Don polysaccharides.


Assuntos
Cebolinha-Francesa , Cebolas , Polissacarídeos , Espectroscopia de Ressonância Magnética , Polissacarídeos/farmacologia
9.
Mol Pharm ; 21(5): 2298-2314, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38527915

RESUMO

Hypertrophic scars (HS) still remain an urgent challenge in the medical community. Traditional Chinese medicine (TCM) has unique advantages in the treatment of HS. However, due to the natural barrier of the skin, it is difficult for the natural active components of TCM to more effectively penetrate the skin and exert therapeutic effects. Therefore, the development of an efficient drug delivery system to facilitate enhanced transdermal absorption of TCM becomes imperative for its clinical application. In this study, we designed a compound Salvia miltiorrhiza-Blumea balsamifera nanoemulsion gel (CSB-NEG) and investigated its therapeutic effects on rabbit HS models. The prescription of CSB-NEG was optimized by single-factor, pseudoternary phase diagram, and central composite design experiments. The results showed that the average particle size and PDI of the optimized CSB-NE were 46.0 ± 0.2 nm and 0.222 ± 0.004, respectively, and the encapsulation efficiency of total phenolic acid was 93.37 ± 2.56%. CSB-NEG demonstrated excellent stability and skin permeation in vitro and displayed a significantly enhanced ability to inhibit scar formation compared to the CSB physical mixture in vivo. After 3 weeks of CSB-NEG treatment, the scar appeared to be flat, pink, and flexible. Furthermore, this treatment also resulted in a decrease in the levels of the collagen I/III ratio and TGF-ß1 and Smad2 proteins while simultaneously promoting the growth and remodeling of microvessels. These findings suggest that CSB-NEG has the potential to effectively address the barrier properties of the skin and provide therapeutic benefits for HS, offering a new perspective for the prevention and treatment of HS.


Assuntos
Cicatriz Hipertrófica , Emulsões , Géis , Salvia miltiorrhiza , Absorção Cutânea , Coelhos , Animais , Cicatriz Hipertrófica/tratamento farmacológico , Salvia miltiorrhiza/química , Absorção Cutânea/efeitos dos fármacos , Emulsões/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Modelos Animais de Doenças , Pele/efeitos dos fármacos , Pele/patologia , Pele/metabolismo , Administração Cutânea , Tamanho da Partícula , Masculino , Nanopartículas/química , Medicina Tradicional Chinesa/métodos , Orelha/patologia , Sistemas de Liberação de Medicamentos/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-38430166

RESUMO

Background: Anthracycline chemotherapy is highly effective in treating various cancers but is associated with significant cardiotoxicity. Chinese herbal compounds have shown promise in mitigating this adverse effect, warranting systematic evaluation for clinical applicability. Objective: This study seeks to systematically assess the effectiveness of Chinese herbal compounds in managing anthracycline-induced cardiotoxicity via meta-analysis. The objective is to establish an evidence-based framework for their clinical use in preventing and treating this condition. Methods: This study employed a systematic review and meta-analysis design. A comprehensive search strategy was implemented across multiple databases, including CNKI, VIP, PubMed, Embase, and the Cochrane Library, to identify relevant randomized controlled trials (RCTs). Data collection involved extracting information on the efficacy of Chinese herbal compounds in treating anthracycline-induced cardiotoxicity. The primary outcome measures included left ventricular ejection fraction (LVEF), serum levels of cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), creatine kinase (CK), and ST-T abnormality. The risk of bias in these studies was assessed following Cochrane Handbook guidelines. Meta-analysis of outcome indicators was conducted utilizing RevMan 5.4. Results: A total of 10 RCTs involving 748 patients met the inclusion criteria. Findings indicate that Chinese herbal compounds significantly enhance left ventricular ejection fraction (LVEF) while reducing serum levels of cTnI, CK-MB, and CK. Additionally, the compounds demonstrate a significant improvement in ST-T abnormality. Conclusions: Chinese herbal compounds exhibit promising potential in ameliorating anthracycline-induced cardiotoxicity. These findings underscore the potential utility of Chinese herbal medicine as an adjunctive therapy in managing this condition. Further research is warranted to explain the underlying mechanisms and optimize their clinical application.

11.
Exp Hematol Oncol ; 13(1): 31, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475936

RESUMO

Sarcoma is a malignant tumor that originates from mesenchymal tissue. The common treatment for sarcoma is surgery supplemented with radiotherapy and chemotherapy. However, patients have a 5-year survival rate of only approximately 60%, and sarcoma cells are highly resistant to chemotherapy. Ferroptosis is an iron-dependent nonapoptotic type of regulated programmed cell death that is closely related to the pathophysiological processes underlying tumorigenesis, neurological diseases and other conditions. Moreover, ferroptosis is mediated via multiple regulatory pathways that may be targets for disease therapy. Recent studies have shown that the induction of ferroptosis is an effective way to kill sarcoma cells and reduce their resistance to chemotherapeutic drugs. Moreover, ferroptosis-related genes are related to the immune system, and their expression can be used to predict sarcoma prognosis. In this review, we describe the molecular mechanism underlying ferroptosis in detail, systematically summarize recent research progress with respect to ferroptosis application as a sarcoma treatment in various contexts, and point out gaps in the theoretical research on ferroptosis, challenges to its clinical application, potential resolutions of these challenges to promote ferroptosis as an efficient, reliable and novel method of clinical sarcoma treatment.

12.
J Orthop Surg Res ; 19(1): 178, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468339

RESUMO

BACKGROUND: Osteoarthritis (OA) is a common degenerative joint disease characterized by persistent articular cartilage degeneration and synovitis. Oxymatrine (OMT) is a quinzolazine alkaloid extracted from the traditional Chinese medicine, matrine, and possesses anti-inflammatory properties that may help regulate the pathogenesis of OA; however, its mechanism has not been elucidated. This study aimed to investigate the effects of OMT on interleukin-1ß (IL-1ß)-induced damage and the potential mechanisms of action. METHODS: Chondrocytes were isolated from Sprague-Dawley rats. Toluidine blue and Collagen II immunofluorescence staining were used to determine the purity of the chondrocytes. Thereafter, the chondrocytes were subjected to IL-1ß stimulation, both in the presence and absence of OMT, or the autophagy inhibitor 3-methyladenine (3-MA). Cell viability was assessed using the MTT assay and SYTOX Green staining. Additionally, flow cytometry was used to determine cell apoptosis rate and reactive oxygen species (ROS) levels. The protein levels of AKT, mTOR, LC3, P62, matrix metalloproteinase-13, and collagen II were quantitatively analyzed using western blotting. Immunofluorescence was used to assess LC3 expression. RESULTS: OMT alleviated IL-1ß-induced damage in chondrocytes, by increasing the survival rate, reducing the apoptosis rates of chondrocytes, and preventing the degradation of the cartilage matrix. In addition, OMT decreased the ROS levels and inhibited the AKT/mTOR signaling pathway while promoting autophagy in IL-1ß treated chondrocytes. However, the effectiveness of OMT in improving chondrocyte viability under IL-1ß treatment was limited when autophagy was inhibited by 3-MA. CONCLUSIONS: OMT decreases oxidative stress and inhibits the AKT/mTOR signaling pathway to enhance autophagy, thus inhibiting IL-1ß-induced damage. Therefore, OMT may be a novel and effective therapeutic agent for the clinical treatment of OA.


Assuntos
Alcaloides , Cartilagem Articular , Matrinas , Osteoartrite , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Condrócitos/metabolismo , Interleucina-1beta/toxicidade , Interleucina-1beta/metabolismo , Osteoartrite/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Cartilagem Articular/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Alcaloides/metabolismo , Autofagia , Colágeno/metabolismo , Apoptose
13.
Artigo em Inglês | MEDLINE | ID: mdl-38521736

RESUMO

OBJECTIVE: Converging evidence indicates that subjective cognitive decline (SCD) could be an early indicator of dementia. The hippocampus is the earliest affected region during the progression of cognitive impairment. However, little is known about whether and how acupuncture change the hippocampal structure and function of SCD individuals. METHODS: Here, we used multi-modal MRI to reveal the mechanism of acupuncture in treating SCD. Seventy-two older participants were randomized into acupuncture or sham acupuncture group and treated for 12 weeks. RESULTS: At the end of the intervention, compared to sham acupuncture, participants with acupuncture treatment showed improvement in composite Z score from multi-domain neuropsychological tests, as well as increased hippocampal volume and functional connectivity. Moreover, the greater white matter integrity of the fornix, which is the major output tract of the hippocampus, was shown in the acupuncture group. CONCLUSION: These findings suggest that acupuncture may improve the cognitive function of SCD individuals, and increase hippocampal volume on the regional level and enhance the structural and functional connectivity of hippocampus on the connective level.

14.
Phytomedicine ; 128: 155456, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537446

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a heterogeneous metabolic and endocrine disorder that causes anovulatory infertility and abnormal folliculogenesis in women of reproductive age. Several studies have revealed inflammation in PCOS follicles, and recent evidence suggests that Berberine (BBR) effectively reduces inflammatory responses in PCOS, however, the underlying mechanisms remain unclear. PURPOSE: To determine the underlying mechanisms by which BBR alleviates inflammation in PCOS. STUDY DESIGN: Primary human GCs from healthy women and women with PCOS, and KGN cells were used for in vitro studies. ICR mice were used for in vivo studies. METHODS: Gene expression was measured using RT-qPCR. HAS2, inflammatory cytokines, and serum hormones were assayed by ELISA. Protein expression profiles were assayed by Western blot. Chronic low-grade inflammatory mouse models were developed by intraperitoneal injection with LPS, and PCOS mouse models were established by subcutaneous intraperitoneal injection of DHEA. BBR and 4-MU were administered by gavage. Ovarian morphologic changes were evaluated using H&E staining. HAS2 expression in the ovary was assayed using Western blot and immunohistochemistry. RESULTS: Our results confirmed that HAS2 expression and hyaluronan (HA) accumulation are closely associated with inflammatory responses in PCOS. Data obtained from in vitro studies showed that HAS2 and inflammatory genes (e.g., MCP-1, IL-1ß, and IL-6) are significantly upregulated in PCOS samples and LPS-induced KGN cells compared to their control groups. In addition, these effects were reversed by blocking HAS2 expression or HA synthesis using BBR or 4-MU, respectively. Furthermore, HAS2 overexpression induces the expression of inflammatory genes in PCOS. These results were further confirmed in LPS- and DHEA-induced mouse models, where inflammatory genes were reduced by BBR or 4-MU, and ovarian morphology was restored. CONCLUSIONS: Our results define previously unknown links between HAS2 and chronic low-grade inflammation in the follicles of women with PCOS. BBR exerts its anti-inflammatory effects by down-regulating HAS2. This study provides a novel therapeutic target for alleviating ovarian inflammation in women with PCOS.


Assuntos
Berberina , Modelos Animais de Doenças , Hialuronan Sintases , Inflamação , Camundongos Endogâmicos ICR , Síndrome do Ovário Policístico , Síndrome do Ovário Policístico/tratamento farmacológico , Berberina/farmacologia , Feminino , Animais , Humanos , Hialuronan Sintases/metabolismo , Inflamação/tratamento farmacológico , Camundongos , Ácido Hialurônico , Adulto , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Desidroepiandrosterona/farmacologia , Ovário/efeitos dos fármacos , Lipopolissacarídeos , Citocinas/metabolismo
15.
Nucleic Acid Ther ; 34(2): 83-89, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38315742

RESUMO

Oligonucleotides have emerged as valuable new therapeutics. Presently, oligonucleotide manufacturing consists in a series of stepwise additions until the full-length product is obtained. Deprotection of the phosphorus backbone before cleavage and deprotection (C&D) by ammonolysis is necessary to control the 3-(2-cyanoethyl) thymidine (CNET) impurity. In this study, we demonstrate that the use of piperazine as a scavenger of acrylonitrile allows phosphorus deprotection and C&D to be combined in a single step. This reduces solvent consumption, processing time, and CNET levels. Additionally, we showed that substitution of piperazine for triethylamine in the phosphorus deprotection step of supported-synthesis leads to reduced reaction times and lower levels of CNET impurities.


Assuntos
Oligonucleotídeos , Fósforo , Piperazinas
16.
Adv Sci (Weinh) ; 11(16): e2306359, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417123

RESUMO

Recurrent spontaneous abortion (RSA) is a pregnancy-related condition with complex etiology. Trophoblast dysfunction and abnormal macrophage polarization and metabolism are associated with RSA; however, the underlying mechanisms remain unknown. Jupiter microtubule-associated homolog 2 (JPT2) is essential for calcium mobilization; however, its role in RSA remains unclear. In this study, it is found that the expression levels of JPT2, a nicotinic acid adenine dinucleotide phosphate-binding protein, are decreased in the villous tissues of patients with RSA and placental tissues of miscarried mice. Mechanistically, it is unexpectedly found that abnormal JPT2 expression regulates trophoblast function and thus involvement in RSA via c-Jun N-terminal kinase (JNK) signaling, but not via calcium mobilization. Specifically, on the one hand, JPT2 deficiency inhibits trophoblast adhesion, migration, and invasion by inhibiting the JNK/atypical chemokine receptor 3 axis. On the other hand, trophoblast JPT2 deficiency contributes to M1 macrophage polarization by promoting the accumulation of citrate and reactive oxygen species via inhibition of the JNK/interleukin-6 axis. Self-complementary adeno-associated virus 9-JPT2 treatment alleviates embryonic resorption in abortion-prone mice. In summary, this study reveals that JPT2 mediates the remodeling of the immune microenvironment at the maternal-fetal interface, suggesting its potential as a therapeutic target for RSA.


Assuntos
Aborto Habitual , Macrófagos , Trofoblastos , Animais , Feminino , Humanos , Camundongos , Gravidez , Aborto Habitual/genética , Aborto Habitual/imunologia , Aborto Habitual/terapia , Modelos Animais de Doenças , Macrófagos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Trofoblastos/metabolismo
17.
Molecules ; 29(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338449

RESUMO

Radix Rehmanniae (RR), a famous traditional Chinese medicine (TCM) widely employed in nourishing Yin and invigorating the kidney, has three common processing forms in clinical practice, including fresh Radix Rehmanniae (FRR), raw Radix Rehmanniae (RRR), and processed Radix Rehmanniae (PRR). However, until now, there has been less exploration of the dynamic variations in the characteristic constituents and degradation products of catalpol as a representative iridoid glycoside with the highest content in RR during the process from FRR to PRR. In this study, an ultra-performance liquid chromatography coupled with photodiode array detector (UPLC-PDA) method was successfully established for the simultaneous determination of ten characteristic components to explore their dynamic variations in different processed products of RR. Among them, iridoid glycosides, especially catalpol, exhibited a sharp decrease from RRR to PRR. Then, three degradation products of catalpol were detected under simulated processing conditions (100 °C, pH 4.8 acetate buffer solution), which were isolated and identified as jiofuraldehyde, cataldehyde, and norviburtinal, respectively. Cataldehyde was first reported as a new compound. Moreover, the specificity of norviburtinal in self-made PRR samples was discovered and validated, which was further confirmed by testing in commercially available PRR samples. In conclusion, our study revealed the decrease in iridoid glycosides and the production of new degradation substances during the process from FRR to PRR, which is critical for unveiling the processing mechanism of RR.


Assuntos
Medicamentos de Ervas Chinesas , Extratos Vegetais , Rehmannia , Terpenos , Glucosídeos Iridoides , Rehmannia/química , Glicosídeos Iridoides/química , Medicamentos de Ervas Chinesas/química
18.
Heliyon ; 10(3): e24336, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318072

RESUMO

Background: Qing-Jin-Hua-Tan decoction (QJHTD) is a classic traditional Chinese medicine (TCM) prescription that first appeared in the ancient book Yi-Xue-Tong-Zhi. QJHTD has shown effectiveness for treating chronic obstructive pulmonary disease (COPD), although its mechanisms of action are still perplexing. The molecular mechanisms underlying the curative effects of QJHTD on COPD is worth exploring. Methods: In vitro antiapoptotic and antiinflammatory activities of QJHTD were evaluated using cell viability, proliferation, apoptosis rate, and expression of IL-1ß and TNF-α in BEAS-2B and RAW264.7 cells challenged with cigarette smoke (CS) extract (CSE) and lipopolysaccharide (LPS). In vivo therapeutic activities of QJHTD were evaluated using respiratory parameters (peak inspiratory flow (PIFb) and peak expiratory flow (PEFb) values), histopathology (mean linear intercept, MLI), and proinflammatory cytokine (IL-1ß and TNF-α) and cleaved caspase-3 (c-Casp3) levels in the lung tissue of CS-LPS-exposed BALB/c mice. Network pharmacology-based prediction, transcriptomic analysis, and metabolic profiling were employed to investigate the signaling molecules and metabolites pertinent to the anti-COPD action of QJHTD. Results: Increased cell viability and proliferation with decreased apoptosis rate and proinflammatory cytokine expression were noted after QJHTD intervention. QJHTD administration elevated PEFb and PIFb values, reduced MLI, and inhibited IL-1ß, TNF-α, and c-Casp3 expression in vivo. Integrated network pharmacology-transcriptomics revealed that suppressing inflammatory signals (IL-1ß, IL-6, TNF, IκB-NF-κB, TLR, and MAPK) and apoptosis contributed to the anti-COPD property of QJHTD. Metabolomic profiling unveiled prominent roles for the suppression of apoptosis and sphingolipid (SL) metabolism and the promotion of choline (Ch) metabolism in the anti-COPD effect of QJHTD. Integrative transcriptomics-metabolomics unraveled the correlation between SL metabolism and apoptosis. In silico molecular docking revealed that acacetin, as an active compound in QJHTD, could bind with high affinity to MEK1, MEK2, ERK1, ERK2, Bcl2, NF-κB, and alCDase target proteins. Conclusion: The therapeutic effect of QJHTD on COPD is dependent on regulating inflammatory signals and apoptosis-directed SL metabolism. These findings provide deeper insights into the molecular mechanism of action of QJHTD against COPD and justify its theoretical promise in novel pharmacotherapy for this multifactorial disease.

19.
BMC Plant Biol ; 24(1): 105, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38342903

RESUMO

BACKGROUND: Nitrogen (N) metabolism-related key genes and conserved amino acid sites in key enzymes play a crucial role in improving N use efficiency (NUE) under N stress. However, it is not clearly known about the molecular mechanism of N deficiency-induced improvement of NUE in the N-sensitive rhizomatous medicinal plant Panax notoginseng (Burk.) F. H. Chen. To explore the potential regulatory mechanism, the transcriptome and proteome were analyzed and the three-dimensional (3D) information and molecular docking models of key genes were compared in the roots of P. notoginseng grown under N regimes. RESULTS: Total N uptake and the proportion of N distribution to roots were significantly reduced, but the NUE, N use efficiency in biomass production (NUEb), the recovery of N fertilizer (RNF) and the proportion of N distribution to shoot were increased in the N0-treated (without N addition) plants. The expression of N uptake- and transport-related genes NPF1.2, NRT2.4, NPF8.1, NPF4.6, AVP, proteins AMT and NRT2 were obviously up-regulated in the N0-grown plants. Meanwhile, the expression of CIPK23, PLC2, NLP6, TCP20, and BT1 related to the nitrate signal-sensing and transduction were up-regulated under the N0 condition. Glutamine synthetase (GS) activity was decreased in the N-deficient plants, while the activity of glutamate dehydrogenase (GDH) increased. The expression of genes GS1-1 and GDH1, and proteins GDH1 and GDH2 were up-regulated in the N0-grown plants, there was a significantly positive correlation between the expression of protein GDH1 and of gene GDH1. Glu192, Glu199 and Glu400 in PnGS1 and PnGDH1were the key amino acid residues that affect the NUE and lead to the differences in GDH enzyme activity. The 3D structure, docking model, and residues of Solanum tuberosum and P. notoginseng was similar. CONCLUSIONS: N deficiency might promote the expression of key genes for N uptake (genes NPF8.1, NPF4.6, AMT, AVP and NRT2), transport (NPF1.2 and NRT2.4), assimilation (proteins GS1 and GDH1), signaling and transduction (genes CIPK23, PLC2, NLP6, TCP20, and BT1) to enhance NUE in the rhizomatous species. N deficiency might induce Glu192, Glu199 and Glu400 to improve the biological activity of GS1 and GDH, this has been hypothesized to be the main reason for the enhanced ability of N assimilation in N-deficient rhizomatous species. The key genes and residues involved in improving NUE provide excellent candidates for the breeding of medicinal plants.


Assuntos
Panax notoginseng , Plantas Medicinais , Nitrogênio/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Panax notoginseng/genética , Panax notoginseng/metabolismo , Simulação de Acoplamento Molecular , Melhoramento Vegetal , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Integr Med Res ; 13(1): 101021, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38379605

RESUMO

Background: The integration of acupuncture with intramuscular injection of diclofenac sodium can expedite the onset of analgesia in treating acute renal colic caused by urolithiasis. However, it remains unclear whether acupuncture can accelerate pain relief constantly until complete remission. This study aimed to explore the extent to which acupuncture can expedite the onset time of response or complete pain relief in treating acute renal colic, and the predictive value of patient characteristics for treatment efficacy. Methods: This secondary analysis utilized data from a prior randomized controlled trial. Eighty patients with acute renal colic were randomly assigned 1:1 to the acupuncture group or the sham acupuncture group. After intramuscular injection of diclofenac sodium, acupuncture or sham acupuncture was delivered to patients. The outcomes included time to response (at least a 50 % reduction in pain) and complete pain relief. Between-group comparison under the 2 events was estimated by Kaplan-Meier methodology. Subgroup analysis was performed utilizing the Cox proportional hazards model. Results: The median response time and complete pain relief time in the acupuncture group were lower than those in the sham acupuncture group (5 vs 30 min, Log Rank P < 0.001; 20 min vs not observed, Log Rank P < 0.001, respectively). Hazard Ratios (HRs) for response across all subgroups favored the acupuncture group. All HRs for complete pain relief favored acupuncture, expect large stone and moderate pain at baseline. No interaction was found in either event. Conclusion: Acupuncture can accelerate the response time and complete pain relief time for patients with acute renal colic, with the efficacy universally. Trial registration: This study has been registered at Chinese Clinical Trial Registry: ChiCTR1900025202.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA