Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 25(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153091

RESUMO

The human gut microbiome plays an important role in human health, and many factors such as environment, host genetics, age, and diet have been found to influence the microbial composition. Tea, as one of the widely consumed beverages, has been known for centuries to have antioxidant, anti-inflammatory, and anticancer effects. To investigate the impact of green tea polyphenol on the diversity and metabolic functions of human gut microbes, we applied an in vitro human colonic model (HCM) in this study to mimic a short-term green tea ingestion event and investigate its related changes to gut microbial composition and their metabolic functions. The pH, temperature, anaerobic environment, feeding nutrient, and time point in each compartment of the HCM were tightly controlled to simulate the intestinal system, and pooled human fecal samples of two healthy volunteers were used for the colon microbiota inoculation within the colonic model. By adding green tea extract (GTE) to the growth medium, the detailed impacts of GTE polyphenol on gut microbial population/diversity, gut microbial metabolites, metabolic pathways, and their associations were investigated via 16 S ribosomal DNA sequencing and liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) analyses. Our data indicated that the treatment of green tea extract applied to gut microbiota can induce a significant decrease in the abundance of Firmicutes and a slight decrease in the abundance of Bacteroidetes, and these changes result in a decreased Firmicutes/Bacteroidetes ratio, which can be an effective indicator for successful GTE intervention, which may generate beneficial health effect to human. Meanwhile, the relative abundances of many detected bacteria genera among three HCM vessels changed through the GTE intervention. The overall effects of GTE on gut microbial beta-diversity were observed by multivariate statistical analyses, and the differences in metabolic profiles from different GTE treatment stages were detected. Moreover, we identified several associations between microbial population and microbial metabolites, which may assist us in establishing new hypotheses for future related studies. In summary, our study suggested that the microbial compositional changes induced by GTE also changed their metabolic functions, and consequentially, may change the host metabolism and impact human health.


Assuntos
Bacteroidetes , Colo/microbiologia , Firmicutes , Microbioma Gastrointestinal , Modelos Biológicos , Chá , Bacteroidetes/classificação , Bacteroidetes/crescimento & desenvolvimento , Firmicutes/classificação , Firmicutes/crescimento & desenvolvimento , Humanos
2.
J Agric Food Chem ; 66(6): 1386-1393, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29345909

RESUMO

This study examined the ability of Lactobacillus acidophilus (LA) to ferment black tea extract (BTE) and the enhancement of Escherichia coli cellular uptake of phenolic compounds when these bacteria were incubated with fermented BTE. The inhibitory effects of BTE to E. coli bacteria with and without fermentation were compared. Several intracellular phenolic compounds as well as metabolic profiles of E. coli with and without treatments were also determined using a high-performance liquid chromatography-tandem mass spectrometry-based approach. Our results showed that of three concentrations from the non-fermented BTE treatment, only the extract from the 25 mg/mL tea leaves solution could inhibit E. coli survival, while LA-fermented BTE extract from 5, 10, and 25 mg/mL tea leaves solutions all inhibited E. coli growth significantly. Intracellular concentrations of (+)-catechin-3-gallate/(-)-epicatechin-3-gallate and (+)-catechin/(-)-epicatechin were significantly higher when E. coli was treated with fermented BTE in comparison to non-fermented BTE. Scanning electron microscopy images indicated that the intracellular phenolic compounds inhibited E. coli growth by increasing endogenous oxidative stress. Metabolic profiles of E. coli were also investigated to understand their metabolic response when treated with BTE, and significant metabolic changes of E. coli were observed. Metabolic profile data were further analyzed using partial least squares discriminant analysis to distinguish the fermented BTE treatment group from the control group and the non-fermented BTE treatment group. The results indicated a large-scale E. coli metabolic dysregulation induced by the fermented BTE. Our findings showed that LA fermentation can be an efficient approach to enhance phenolic inhibition of bacterial cells through increased endogenous oxidative stress and dysregulated metabolic activities.


Assuntos
Camellia sinensis/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Lactobacillus acidophilus/metabolismo , Extratos Vegetais/farmacologia , Camellia sinensis/química , Camellia sinensis/metabolismo , Fermentação , Metabolômica , Fenóis/química , Fenóis/metabolismo , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA