Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Sci ; 12(10): 2672-2688, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38596867

RESUMO

Breast cancer, a pervasive malignancy affecting women, demands a diverse treatment approach including chemotherapy, radiotherapy, and surgical interventions. However, the effectiveness of doxorubicin (DOX), a cornerstone in breast cancer therapy, is limited when used as a monotherapy, and concerns about cardiotoxicity persist. Ginsenoside Rg3, a classic compound of traditional Chinese medicine found in Panax ginseng C. A. Mey., possesses diverse pharmacological properties, including cardiovascular protection, immune modulation, and anticancer effects. Ginsenoside Rg3 is considered a promising candidate for enhancing cancer treatment when combined with chemotherapy agents. Nevertheless, the intrinsic challenges of Rg3, such as its poor water solubility and low oral bioavailability, necessitate innovative solutions. Herein, we developed Rg3-PLGA@TMVs by encapsulating Rg3 within PLGA nanoparticles (Rg3-PLGA) and coating them with membranes derived from tumor cell-derived microvesicles (TMVs). Rg3-PLGA@TMVs displayed an array of favorable advantages, including controlled release, prolonged storage stability, high drug loading efficiency and a remarkable ability to activate dendritic cells in vitro. This activation is evident through the augmentation of CD86+CD80+ dendritic cells, along with a reduction in phagocytic activity and acid phosphatase levels. When combined with DOX, the synergistic effect of Rg3-PLGA@TMVs significantly inhibits 4T1 tumor growth and fosters the development of antitumor immunity in tumor-bearing mice. Most notably, this delivery system effectively mitigates the toxic side effects of DOX, particularly those affecting the heart. Overall, Rg3-PLGA@TMVs provide a novel strategy to enhance the efficacy of DOX while simultaneously mitigating its associated toxicities and demonstrate promising potential for the combined chemo-immunotherapy of breast cancer.


Assuntos
Doxorrubicina , Ginsenosídeos , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Ginsenosídeos/administração & dosagem , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Feminino , Nanopartículas/química , Camundongos , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Células Dendríticas/efeitos dos fármacos
2.
Front Vet Sci ; 11: 1335765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496306

RESUMO

Microorganisms inhabit the gastrointestinal tract of ruminants and regulate body metabolism by maintaining intestinal health. The state of gastrointestinal health is influenced not only by the macro-level factors of optimal development and the physiological structure integrity but also by the delicate equilibrium between the intestinal flora and immune status at the micro-level. Abrupt weaning in young ruminants causes incomplete development of the intestinal tract resulting in an unstable and unformed microbiota. Abrupt weaning also induced damages to the microecological homeostasis of the intestinal tract, resulting in the intestinal infections and diseases, such as diarrhea. Recently, nutritional and functional yeast culture has been researched to tackle these problems. Herein, we summarized current known interactions between intestinal microorganisms and the body of young ruminants, then we discussed the regulatory effects of using yeast culture as a feed supplement. Yeast culture is a microecological preparation that contains yeast, enriched with yeast metabolites and other nutrient-active components, including ß-glucan, mannan, digestive enzymes, amino acids, minerals, vitamins, and some other unknown growth factors. It stimulates the proliferation of intestinal mucosal epithelial cells and the reproduction of intestinal microorganisms by providing special nutrient substrates to support the intestinal function. Additionally, the ß-glucan and mannan effectively stimulate intestinal mucosal immunity, promote immune response, activate macrophages, and increase acid phosphatase levels, thereby improving the body's resistance to several disease. The incorporation of yeast culture into young ruminants' diet significantly alleviated the damage caused by weaning stress to the gastrointestinal tract which also acts an effective strategy to promote the balance of intestinal flora, development of intestinal tissue, and establishment of mucosal immune system. Our review provides a theoretical basis for the application of yeast culture in the diet of young ruminants.

3.
Plant Physiol Biochem ; 207: 108416, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38354528

RESUMO

Silicon (Si) and selenium (Se) can improve the tolerance of plants to NaCl-induced salt stress. However, few studies are available on their regulatory effects on plants' tolerance to calcium nitrate stress, which often occurs in protected facilities, causing secondary soil salinization. In this study, we report the effects of Si (6 mM) and Se (20 µM) applied separately or in combination on the growth, photosynthesis, oxidative damage, and nitrogen metabolism of tomato plants, as well as fruit quality under calcium nitrate stress. The results showed that applications of Si or Se alone or in combination improved the plant growth and photosynthetic performance and reduced oxidative damage of the stressed plants. Applications of Si and Se did not decrease the calcium accumulation in leaves of the stressed plants. Under calcium nitrate stress, the concentrations of NO3-, NO2- and NH4+ in leaves were significantly increased, while the activities of nitrogen assimilation-related enzymes (including nitrate reductase, nitrite reductase, glutamine synthase, glutamine-2-oxoglutarate aminotransferase and glutamate dehydrogenase) were decreased. Applications of Si and Se, especially their combined treatment, decreased the NO3-, NO2-, and NH4+ concentrations and enhanced the activities of nitrogen assimilation-related enzymes in the stressed plants. Applied Si and Se also decreased the nitrate and titratable acid concentrations and increased vitamin levels in tomato fruits under calcium nitrate stress. It is suggested that Si and Se improved the tomato plant growth and fruit quality under calcium nitrate stress by alleviating oxidative damage and promoting both photosynthesis and nitrogen assimilation.


Assuntos
Compostos de Cálcio , Selênio , Solanum lycopersicum , Nitratos/farmacologia , Nitratos/metabolismo , Selênio/farmacologia , Silício/farmacologia , Dióxido de Nitrogênio , Glutamina , Nitrogênio/metabolismo
4.
J Med Food ; 27(1): 22-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236693

RESUMO

Astragali Radix (AR) or its extract has been used as an herbal medicine and dietary supplement in China, Europe, and the United States. The gut microbiota could provide new insights for exploring dietary supplements' underlying mechanism on organisms. However, no reports have focused on the regulatory effect of AR on the gut microbiota as a dietary supplement. In this study, healthy ICR mice of either sex were divided into AR and control (CON) groups and given AR water extract (4.55 mg/kg·day-1) or saline by gavage for 14 days, respectively. Then 16S rRNA gene sequencing and ultra-high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry-based fecal metabolomics were integrated to investigate the benefits of dietary AR. Weighted gene coexpression network analysis was also introduced to investigate the metabolites with highly synergistic changes. AR supplementation influenced the structure of intestinal microflora, especially enriching short-chain fatty acid-producing bacteria g_Coprobacillus, g_Prevotella, and g_Parabacteroides. AR also significantly altered the fecal metabolome, mainly related to amino acid metabolism, nucleotide metabolism, and bile acid (BA) metabolism. Moreover, the increased secondary BAs and BA-sulfates might closely relate to intestinal microflora. These findings provide valuable insights for future research of dietary AR as a functional food.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , RNA Ribossômico 16S/genética , Camundongos Endogâmicos ICR , Metabolômica/métodos , Metaboloma
5.
Chin J Nat Med ; 22(1): 62-74, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38278560

RESUMO

Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.


Assuntos
Caderinas , Lesões das Artérias Carótidas , Diterpenos , Lesões do Sistema Vascular , Camundongos , Ratos , Animais , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Remodelação Vascular , Proliferação de Células , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Lesões das Artérias Carótidas/patologia , Simulação de Acoplamento Molecular , Músculo Liso Vascular , Movimento Celular , Camundongos Endogâmicos C57BL , Transdução de Sinais , Succinatos/metabolismo , Succinatos/farmacologia , Potássio/metabolismo , Potássio/farmacologia , Células Cultivadas
6.
Am J Chin Med ; 52(1): 217-230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38291582

RESUMO

Cancer has evolved into a substantial public health concern as the second-leading cause of mortality globally. Radiotherapy and chemotherapy have been the two most widely used cancer therapies in recent years; however, both have drawbacks. Therefore, the focus has shifted to the creation of herbal medicines, the extraction of active ingredients, replacement therapy, and the adverse effects of these medications. Ginsenoside Rh2, which is extracted from ginseng, has been identified in many cancer cells. The immune system of the body is strengthened by ginsenoside Rh2, which can also cause the proliferation, death, and differentiation of tumor cells through various pathways. For instance, it inhibits the expression of the NF-[Formula: see text]B signaling pathway and induces cell apoptosis, affects the expression levels of mitochondrial apoptosis proteins Bcl-2 and Bax, and cooperates with the PD-1 blockade to reactivate T cells to promote an antitumor immune response. Furthermore, ginsenosides Rh2 has the effect of reversing the toxic effect of chemotherapy drugs on normal cells, reducing myocardial damage, and relieving bone marrow function suppression. For clinical applications, it is mainly used as an adjuvant drug for preoperative neoadjuvant chemotherapy, postoperative adjuvant chemotherapy, and rescue treatment of advanced cancer. This paper summarizes the pharmacological action and mechanism of ginsenosides Rh2 in all kinds of cancer and looks forward to its future development and application.


Assuntos
Ginsenosídeos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Apoptose , Proteínas Reguladoras de Apoptose , Transdução de Sinais
7.
Pharm Biol ; 62(1): 42-52, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112463

RESUMO

CONTEXT: Liuwei Dihuang pill (LWDH) has been used to treat postmenopausal osteoporosis (PMOP). OBJECTIVE: To explore the effects and mechanisms of action of LWDH in PMOP. MATERIALS AND METHODS: Forty-eight female Sprague-Dawley rats were divided into four groups: sham-operated (SHAM), ovariectomized (OVX), LWDH high dose (LWDH-H, 1.6 g/kg/d) and LWDH low dose (LWDH-L, 0.8 g/kg/d); the doses were administered after ovariectomy via gavage for eight weeks. After eight weeks, the bone microarchitecture was evaluated. The effect of LWDH on the differentiation of bone marrow mesenchymal stem cells (BMSCs) was assessed via osteogenesis- and lipogenesis-induced BMSC differentiation. The senescence-related biological indices were also detected using senescence staining, cell cycle analysis, quantitative real-time polymerase chain reaction and western blotting. Finally, the expression levels of autophagy-related proteins and Yes-associated protein (YAP) were evaluated. RESULTS: LWDH-L and LWDH-H significantly modified OVX-induced bone loss. LWDH promoted osteogenesis and inhibited adipogenesis in OVX-BMSCs. Additionally, LWDH decreased the positive ratio of senescence OVX-BMSCs and improved cell viability, cell cycle, and the mRNA and protein levels of p53 and p21. LWDH upregulated the expression of autophagy-related proteins, LC3, Beclin1 and YAP, in OVX-BMSCs and downregulated the expression of p62. DISCUSSION AND CONCLUSIONS: LWDH improves osteoporosis by delaying the BMSC senescence through the YAP-autophagy axis.


Assuntos
Células-Tronco Mesenquimais , Proteínas de Sinalização YAP , Animais , Feminino , Humanos , Ratos , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/farmacologia , Diferenciação Celular , Osteogênese , Ovariectomia , Ratos Sprague-Dawley
8.
Biotechnol Biofuels Bioprod ; 16(1): 169, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932798

RESUMO

BACKGROUND: Cottonseed oil is a promising edible plant oil with abundant unsaturated fatty acids. However, few studies have been conducted to explore the characteristics of cottonseed oil. The molecular mechanism of cottonseed oil accumulation remains unclear. RESULTS: In the present study, we conducted comparative transcriptome and weighted gene co-expression network (WGCNA) analysis for two G. hirsutum materials with significant difference in cottonseed oil content. Results showed that, between the high oil genotype 6053 (H6053) and the low oil genotype 2052 (L2052), a total of 412, 507, 1,121, 1,953, and 2,019 differentially expressed genes (DEGs) were detected at 10, 15, 20, 25, and 30 DPA, respectively. Remarkably, a large number of the down-regulated DEGs were enriched in the phenylalanine metabolic processes. Investigation into the dynamic changes of expression profiling of genes associated with both phenylalanine metabolism and oil biosynthesis has shed light on a significant competitive relationship in substrate allocation during cottonseed development. Additionally, the WGCNA analysis of all DEGs identified eight distinct modules, one of which includes GhPXN1, a gene closely associated with oil accumulation. Through phylogenetic analysis, we hypothesized that GhPXN1 in G. hirsutum might have been introgressed from G. arboreum. Overexpression of the GhPXN1 gene in tobacco leaf suggested a significant reduction in oil content compared to the empty-vector transformants. Furthermore, ten other crucial oil candidate genes identified in this study were also validated using quantitative real-time PCR (qRT-PCR). CONCLUSIONS: Overall, this study enhances our comprehension of the molecular mechanisms underlying cottonseed oil accumulation.

9.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4711-4721, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802810

RESUMO

This study aimed to investigate the protective effect and underlying mechanism of Mailuo Shutong Pills(MLST) on posterior limb swelling caused by femur fracture in rats. The rats were randomly divided into a sham operation group, a model group, a low-dose MLST group(1.8 g·kg~(-1)·d~(-1)), a high-dose MLST group(3.6 g·kg~(-1)·d~(-1)), and a positive drug group(60 mg·kg~(-1)·d~(-1) Maizhiling Tablets). The femur in the sham operation group was exposed and the wound was sutured, while the other four groups underwent mechanical damage to cause femur fracture. The rats were treated with corresponding drugs by gavage 7 days before modeling and 5 days after modeling, while those in the sham operation group and the model group were given an equivalent dose of distilled water by gavage. Hematoxylin-eosin(HE) staining was used to detect the pathological injury of the posterior limb muscle tissues in rats, and the degree of hind limb swelling was measured. The enzyme-linked immunosorbent assay(ELISA) kit was used to detect the expression levels of interleukin-6(IL-6), interleukin-1ß(IL-1ß), and tumor necrosis factor-α(TNF-α) in the serum of rats in each group. The activity of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and glutathione peroxidase(GSH-Px) in rat serum was also measured. Western blot was used to detect the protein expression levels of heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), and nuclear transcription factor E2-related factor 2(Nrf2) in rat posterior limb muscle tissues. The changes in the intestinal flora and intestinal metabolites in rats were detected by 16S rDNA sequencing and ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS), respectively, to explore the underlying mechanism of MLST in treating posterior limb swelling caused by femur fracture in rats. Compared with the model group, MLST significantly improved the degree of posterior limb swelling in rats, reduced the levels of serum inflammatory factors, and alleviated oxidative stress injury. The HE staining results showed that the inflammatory infiltration in the posterior limb muscle tissues of rats in the MLST groups was significantly improved. Western blot results showed that MLST significantly increased the protein expression of HO-1, NQO1, and Nrf2 in rat posterior limb muscle tissues compared with the model group. The 16S rDNA sequencing results showed that MLST improved the disorder of intestinal flora in rats after femur fracture. The UPLC-MS/MS results showed that MLST significantly affected the bile acid biosynthesis and metabolism pathway in the intestine after femur fracture, and the Spearman analysis confirmed that the metabolite deoxycholic acid involved in bile acid biosynthesis was positively correlated with the abundance of Turicibacter. The metabolite cholic acid was positively correlated with the abundance of Papilibacter, Staphylococcus, and Intestinimonas. The metabolite lithocholic acid was positively correlated with Papilibacter and Intestinimonas. The above results indicated that MLST could protect against the posterior limb swelling caused by femur fracture in rats. This protective effect may be achieved by improving the pathological injury of the posterior limb muscle, reducing the expression levels of inflammatory and oxidative stress-related factors in serum, reducing the oxidative injury of the posterior limb muscle, improving intestinal flora, and balancing the biosynthesis of bile acids in the intestine.


Assuntos
Microbioma Gastrointestinal , Fator 2 Relacionado a NF-E2 , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Cromatografia Líquida , Tipagem de Sequências Multilocus , Espectrometria de Massas em Tandem , Estresse Oxidativo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fêmur , Ácidos e Sais Biliares , DNA Ribossômico , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
10.
Nutrients ; 15(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764723

RESUMO

The supplementation of multiple micronutrients throughout pregnancy can reduce the risk of adverse birth outcomes and various diseases in children. However, the long-term effect of maternal multiple micronutrient levels in the second trimester on the overall development of preschoolers remains unknown. Therefore, 1017 singleton mother-infant pairs and 6-year-old preschoolers were recruited based on the China-Wuxi Birth Cohort Study. Meanwhile, information on the demographic characteristics of pregnant women and preschoolers, maternal copper, calcium, iron, magnesium, and zinc levels in whole blood during the second trimester, and neonatal outcomes, were collected. We aimed to investigate the long-term impact of maternal copper, calcium, iron, magnesium, and zinc levels in the second trimester on mild thinness among 6-year-old preschoolers, and the modifying effect of small for gestational age (SGA), within the Chinese population. Multiple logistic regression models revealed that high-level maternal iron in the second trimester reduced the risk of mild thinness [adjusted OR: 0.46 (95% CI: 0.26, 0.80)] among 6-year-old preschoolers. However, no significant association was found for the remaining four maternal essential metal elements. Additionally, the restricted cubic spline function showed that the risk of mild thinness decreased when maternal iron concentration exceeded 7.47 mmol/L in whole blood during the second trimester. Furthermore, subgroup analysis indicated that the long-term protective effect of high-level maternal iron on mild thinness was only observed in SGA infants. Summarily, high-level maternal iron in the second trimester distinctly lowers the risk of mild thinness among 6-year-old preschoolers, especially in preschoolers with birth outcomes of SGA. Our findings offer evidence for the implementation of iron supplementation in the second trimester as a preventive measure against mild thinness in children.

11.
PLoS One ; 18(9): e0291192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682882

RESUMO

Hyperglycemia can exacerbate cerebral ischemia/reperfusion (I/R) injury, and the mechanism involves oxidative stress, apoptosis, autophagy and mitochondrial function. Our previous research showed that selenium (Se) could alleviate this injury. The aim of this study was to examine how selenium alleviates hyperglycemia-mediated exacerbation of cerebral I/R injury by regulating ferroptosis. Middle cerebral artery occlusion (MCAO) and reperfusion models were established in rats under hyperglycemic conditions. An in vitro model of hyperglycemic cerebral I/R injury was created with oxygen-glucose deprivation and reoxygenation (OGD/R) and high glucose was employed. The results showed that hyperglycemia exacerbated cerebral I/R injury, and sodium selenite pretreatment decreased infarct volume, edema and neuronal damage in the cortical penumbra. Moreover, sodium selenite pretreatment increased the survival rate of HT22 cells under OGD/R and high glucose conditions. Pretreatment with sodium selenite reduced the hyperglycemia mediated enhancement of ferroptosis. Furthermore, we observed that pretreatment with sodium selenite increased YAP and TAZ levels in the cytoplasm while decreasing YAP and TAZ levels in the nucleus. The Hippo pathway inhibitor XMU-MP-1 eliminated the inhibitory effect of sodium selenite on ferroptosis. The findings suggest that pretreatment with sodium selenite can regulate ferroptosis by activating the Hippo pathway, and minimize hyperglycemia-mediated exacerbation of cerebral I/R injury.


Assuntos
Isquemia Encefálica , Ferroptose , Hiperglicemia , Traumatismo por Reperfusão , Selênio , Animais , Ratos , Via de Sinalização Hippo , Selenito de Sódio , Traumatismo por Reperfusão/tratamento farmacológico , Glucose , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico
12.
Cell Death Dis ; 14(6): 347, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37268653

RESUMO

Studies have indicated dietary restriction of methionine/cystine provided a therapeutic benefit in diseases such as cancer. However, the molecular and cellular mechanisms that underlie the interaction between methionine/cystine restriction (MCR) and effects on esophageal squamous cell carcinoma (ESCC) have remained elusive. Here, we discovered the dietary restriction of methionine/cystine has a large effect on cellular methionine metabolism as assayed in a ECA109 derived xenograft model. RNA-seq and enrichment analysis suggested the blocked tumor progression was affected by ferroptosis, together with the NFκB signaling pathway activation in ESCC. Consistently, GSH content and GPX4 expression were downregulated by MCR both in vivo and in vitro. The contents of Fe2+ and MDA were negatively correlated with supplementary methionine in a dose-dependent way. Mechanistically, MCR and silent of SLC43A2, a methionine transporter, diminished phosphorylation of IKKα/ß and p65. Blocked NFκB signaling pathway further decreased the expression of SLC43A2 and GPX4 in both mRNA and protein level, which in turn downregulated the methionine intake and stimulated ferroptosis, respectively. ESCC progression was inhibited by enhanced ferroptosis and apoptosis and impaired cell proliferation. In this study, we proposed a novel feedback regulation mechanism underlie the correlation between dietary restriction of methionine/cystine and ESCC progression. MCR blocked cancer progression via stimulating ferroptosis through the positive feedback loop between SLC43A2 and NFκB signaling pathways. Our results provided the theoretical basis and new targets for ferroptosis-based clinical antitumor treatments for ESCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Cistina/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas/patologia , Metionina/metabolismo , Retroalimentação , NF-kappa B/metabolismo , Transdução de Sinais , Proliferação de Células , Racemetionina/metabolismo , Racemetionina/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
13.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2876-2895, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381950

RESUMO

Microbial transformation is an efficient enzymatic approach for the structural modification of exogenous compounds to obtain derivatives. Compared with traditional chemical synthesis, the microbial transformation has in fact the undoubtable advantages of strong region-and stereo-selectivity, and a low environmental and economic impact on the production process, which can achieve the reactions challenging to chemical synthesis. Because microbes are equipped with a broad-spectrum of enzymes and therefore can metabolize various substrates, they are not only a significant route for obtaining novel active derivatives, but also an effective tool for mimicking mammal metabolism in vitro. Artemisinin, a sesquiterpene with a peroxy-bridged structure serving as the main active functional group, is a famous antimalarial agent discovered from Artemisia annua L. Some sesquiterpenoids, such as dihydroartemisinin, artemether, and arteether, have been developed on the basis of artemisinin, which have been successfully marketed and become the first-line antimalarial drugs recommended by WHO. As revealed by pharmacological studies, artemisinin and its derivatives have exhibited extensive biological activities, including antimalarial, antitumor, antiviral, anti-inflammatory, and immunomodulatory. As an efficient approach for structural modification, microbial transformation of artemisinin and its derivatives is an increasingly popular strategy that attracts considerable attention recently, and numerous novel derivatives have been discovered. Herein, this paper reviewed the microbial transformation of artemisinin and its artemisinin, including microbial strains, culture conditions, product isolation and yield, and biological activities, and summarized the advances in microbial transformation in obtaining active derivatives of artemisinin and the simulation of in vivo metabolism of drugs.


Assuntos
Antimaláricos , Artemisininas , Animais , Antimaláricos/farmacologia , Antivirais , Artemeter , Mamíferos
14.
Toxicol Res (Camb) ; 12(2): 201-215, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37125330

RESUMO

Introduction: Qishenbuqi capsule (QSBQC), a listed Chinese patent prescription, comprises of 4 herbs. Clinically, it has been shown to improve immune functions. Methods: Subjects with Qi deficiency and non-Qi deficiency were recruited, who then took QSBQC for 4 weeks. Traditional Chinese medicine (TCM) syndrome scores and the levels of white blood cells, CD3+ T cells (CD3+), CD4+ T cells (CD3+CD4+), CD8+ T cells (CD3+CD8+), and CD4+/CD8+ were determined. Serum metabolomics was used to explore the metabolic mechanisms of QSBQC on improving immunity. Meanwhile, the potential active ingredients, targets, and pathways of QSBQC on enhancing immunity were screened by network pharmacology. Results: QSBQC significantly improved TCM syndrome scores and increased the number of CD8+ T cells of both Qi deficiency and non-Qi deficiency subjects. Serum metabolomics revealed that QSBQC regulated 18 differential metabolites and 8 metabolic pathways of Qi deficiency, and 12 differential metabolites and 7 metabolic pathways of non-Qi deficiency subjects. The "herbs-compounds-pathways" diagram showed that PQ-2, cimifugin, and divaricatol were the main active components. Pathways in cancer and arginine and proline metabolism could be the most important pathways. Conclusion: Our research revealed the immunoenhancing mechanisms of QSBQC and improved the combination of TCM theory and modern western medicine theory.

15.
Food Res Int ; 161: 111744, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192924

RESUMO

Medicine food homologous (MFH) plants and wholegrains have gained increasing attention for prevention and treatment of type 2 diabetes (T2D). Substantial evidence supports the effectiveness of intermittent energy restriction (IER) in T2D management. However, there are few studies that report intermittent use of a low-calorie pre-prepared food including MFH plants and wholegrains in T2D. The aim of this study was to investigate the effects of Chinese Medical Nutrition Therapy (CMNT), a MFH plants and wholegrains diet accompanied by IER, on glycemic control and potential mechanism. Ten-week-old diabetic db/db mice were randomly divided into CMNT group (feeding low-calorie mouse CMNT diet in day 1-4 and ad libitum regular chow for up to 7 days per cycle) and control group (ad libitum access to regular chow). The results showed that CMNT reduced fasting blood glucose, improved glucose tolerance with higher insulin secretion, attenuated macrophage infiltration, promoted ß-cell proliferation of pancreatic islets, and increased diabetes-improving microbiota (Bacteroides, Rikenellaceae_RC9_gut_group and Coprococcus_1) in db/db mice. Additionally, we performed a pilot study evaluating CMNT in thirty-nine T2D patients without obesity. Participants with T2D randomly assigned to two groups: CMNT group (receiving a consecutive 5-day low-calorie human CMNT diet with 10 days of habitual eating per cycle for 90 days) and control group (continuing on a normal diet). We observed an improvement in glycemic control in CMNT group with significant reduction in HbA1c, fasting glucose, 2 h postprandial blood glucose but control group were not affected. After CMNT intervention, the abundance of the phylum Bacteroidetes, and genus Bacteroides, Parabacteroides and Roseburia were significantly higher than baseline in T2D patient, which were closely associated with glycemic control. These findings suggested that CMNT is a promising nutritional intervention approach in diabetes management.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ilhotas Pancreáticas , Animais , Glicemia , Restrição Calórica , China , Diabetes Mellitus Tipo 2/terapia , Dieta , Hemoglobinas Glicadas , Humanos , Camundongos , Projetos Piloto
16.
Biomed Res Int ; 2022: 9200854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782057

RESUMO

Objectives: To compare the clinical outcomes of using different hemostatic agents after transurethral plasmakinetic resection of the prostate (TUPKP) in benign prostatic hyperplasia (BPH) patients. Methods: The patients were divided into 5 groups according to the hemostatic agents used after TUPKP, including the haemocoagulase agkistrodon for injection (HCA), hemocoagulase for injection (HC), hemocoagulase bothrops atrox for injection (HCB), ethylenediamine diaceturate injection (EDD), and tranexamic acid (TXA). Propensity score matching was performed based on age, body mass index, prostate volume, hypertension status, fasting blood glucose, smoking, and drinking history. The hospitalization time, bladder irrigation time, indwelling catheterization time, the patency of urine flow, and blood transfusion records were used as outcome indicators to compare the clinical effects of these five agents. Results: We finally matched 65 pairs receiving HCA or HC, 71 pairs receiving HCA or HCB, 38 pairs receiving HCA or TXA, and 29 pairs receiving HCA or EDD. Compared with HC, HCA given during the perioperative period significantly reduced the median hospitalization time [7.00 days (5.00, 8.00) vs. 9.00 days (8.00, 10.00); p < 0.001] and median catheterization time (109.00 hours [88.00, 129.00] vs. 164.00 hours [114.00, 189.00], p < 0.001). Compared with EDD, the median hospitalization time (7.00 days [6.00, 8.00] vs. 10.00 days [8.00, 11.00]; p < 0.001) and median catheterization time (113.00 hours [95.00, 143.00] vs. 160.00 hours [139.00, 168.00]; p < 0.001) were also significant shorter in HCA group. Compared with HCB, median bladder irrigation time (45.00 hours [27.00, 71.00] vs. 49.00 hours [45.00, 72.00]; p = 0.04) was shorter in the HCA group. However, there were no statistical differences in outcomes between HCA and TXA. Conclusions: HCA probably has an advantage over HC, HCB, and EDD in reducing the hospitalization time, catheterization time, and bladder irrigation time among BPH patients undergoing TUPKP.


Assuntos
Agkistrodon , Hemostáticos , Hiperplasia Prostática , Ressecção Transuretral da Próstata , Animais , Humanos , Masculino , Batroxobina , Pontuação de Propensão , Próstata , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/cirurgia
17.
Plast Reconstr Surg ; 150(3): 594e-607e, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35791264

RESUMO

BACKGROUND: Lateral epicondylitis is a common enthesopathy, possibly caused by overuse and repetitive activity. Although nonoperative management is the primary approach for treating lateral epicondylitis, clinical guidelines and the literature fail to identify the most effective nonoperative treatment. Therefore, the authors conducted a network meta-analysis to compare the effectiveness of physical therapy and electrophysiotherapy treatments for the treatment of lateral epicondylitis. METHODS: The authors searched MEDLINE, EMBASE, Web of Science, and Scopus for peer-reviewed randomized controlled trials evaluating the effectiveness of physical therapy and electrophysiotherapy treatments. Data related to article characteristics and outcomes (grip strength and pain visual analog scale score) were collected. RESULTS: Twenty-three clinical trials including 1363 participants (mean age ± SD, 47.4 ± 7.5 years; 53.1 percent women) were included in this study. Pain visual analog scale demonstrated significant reductions in scores after treatment with magnetic field [mean difference (95 percent CI), -1.88 (-2.66 to -1.11)], exercise [-0.90 (-1.69 to -0.1)], and acoustic waves [-0.83 (-1.37 to -0.29)] compared with placebo. For grip strength, no treatment modality was found to be significantly effective. A sensitivity analysis that excluded studies with high publication bias and high degrees of heterogeneity produced similar results to the main analysis with the exception of statistically improved grip strength after light therapy [mean difference (95 percent CI), 5.38 (1.71 to 9.04)] and acoustic wave therapy [7.79 (2.44 to 13.15)]. CONCLUSIONS: Electrophysiotherapy treatments should be prioritized over physical therapy. Magnetic field therapy was associated with pain reduction, whereas acoustic wave and light therapy were associated with increased grip strength. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, II.


Assuntos
Cotovelo de Tenista , Feminino , Humanos , Metanálise em Rede , Dor , Medição da Dor , Modalidades de Fisioterapia , Cotovelo de Tenista/terapia
18.
Nano Lett ; 22(10): 4207-4214, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35532346

RESUMO

The specific in situ generation and activation of therapeutic agents with high spatiotemporal precision is expected to revolutionize cancer treatment. Here, we develop an intelligent nanoplatform (termed as NP-Cu), which is constructed by assembling photosensitizer chlorin e6 (Ce6), hypoxia-responsive prodrug banoxantrone (AQ4N) with clickable dibenzocyclooctyne (DIBO) functionalized lysine (D-K), and cyclen-Cu2+ complex, for improving combination anticancer therapy. Cyclen-Cu2+ complex-induced photodynamic therapy (PDT) quenching in NP-Cu can be effectively and selectively activated by tumor-overproduced hydrogen sulfide (H2S). More importantly, the reaction of endogenous H2S with Cu2+ can generate photothermal agent copper sulfide (CuS) for photothermal therapy (PTT). Furthermore, with the activation of PTT and PDT, intracellular hypoxic stress is amplified to trigger AQ4N-associated chemodynamic therapy (CDT), leading to light-enhanced cascade therapy of PDT, PTT and CDT. Therefore, we present a simple and practical strategy for developing pathological stimuli responsive combination therapy, which has the potential of advancing precision cancer medicine.


Assuntos
Neoplasias do Colo , Ciclamos , Nanopartículas , Fotoquimioterapia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia
19.
Adv Ther ; 39(5): 2165-2177, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35296994

RESUMO

INTRODUCTION: This study aimed to evaluate the cost-effectiveness of sintilimab plus bevacizumab versus sorafenib as a first-line treatment for unresectable hepatocellular carcinoma (HCC) in China to provide economic evidence to inform health decision making. METHODS: We performed an economic evaluation from the perspective of the Chinese healthcare system using a partitioned survival model with three mutually exclusive health states: progression free, post-progression, and death. Efficacy data were obtained from the ORIENT-32 clinical trial and extrapolated to the lifetime horizon. Cost and utility values were derived from published studies and online price databases. The primary outcomes of the model were quality-adjusted life-years (QALYs), costs, and incremental cost-effectiveness ratios (ICERs). Sensitivity analyses were carried out to verify the robustness of the model results. RESULTS: Compared with sorafenib, sintilimab plus bevacizumab incurred a higher lifetime cost ($33,766 vs. $23,294) and yielded more QALYs (1.428 vs. 0.928 QALYs). The ICER for sintilimab plus bevacizumab was $20,968/QALY and lower than the willingness-to-pay threshold of $33,592. The results of sensitivity analysis showed that ICER values were most sensitive to the subsequent treatment cost of the sorafenib group after progression and the price of bevacizumab. In the scenario analysis, the ICER was $4191/QALY when a 7.5 mg/kg dose of bevacizumab was applied in the model. CONCLUSIONS: Compared with sorafenib, the sintilimab plus bevacizumab combination is likely to be a cost-effective option for patients with unresectable HCC in China.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/uso terapêutico , Carcinoma Hepatocelular/patologia , Análise Custo-Benefício , Humanos , Neoplasias Hepáticas/patologia , Anos de Vida Ajustados por Qualidade de Vida , Sorafenibe/uso terapêutico
20.
J Ethnopharmacol ; 291: 115095, 2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35176466

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bufonis (VB), an animal drug called Chansu in China, is the product of the secretion of Bufo gargarizans Cantor or B. melanostictus Schneider. As a traditional Chinese medicine (TCM) for a long time, it has been widely used in the treatment of heart failure, ulcer, pain, and various cancers. Cinobufaginn (CNB), the cardiotonic steroid or bufalene lactone extracted from VB, has the effects of detoxification, detumescence, and analgesia. AIM OF THE STUDY: The present study aimed to define the effects of CNB on non-small-cell lung cancer (NSCLC) and identify the potential molecular mechanisms. MATERIALS AND METHODS: A549 cells were treated with cinobufagin and cell viability, apoptosis, migration, and invasion were then evaluated using Cell Counting Kit-8 (CCK8) assays, flow cytometry, and Transwell assays, respectively. Moreover, the levels of proliferating cell nuclear antigen (PCNA), cytokeratin8 (CK8), poly ADP-ribose polymerase (PARP), Caspase3, Caspase8, B-cell lymphoma/lewkmia-2(Bcl-2), Bcl2-Associated X(Bax), forkhead box O1 (FOXO1), and euchromatic histone-lysine N-methyltransferase2 (G9a, EHMT2) in A549 cells were evaluated using qRT-PCR and/or Western blot analysis (WB), Co-IP, immunofluorescence, and immunohistochemistry. An in vivo imaging system, TUNEL, Immunofluorescence, and immunohistochemistry were also used to detect proliferating cell nuclear antigen(PCNA), Ki67, E-Cadherin(E-Cad), FOXO1, and G9a in mouse xenograft model experiments. RESULTS: CNB suppressed cell proliferation, migration, and invasion but promoted apoptosis in A549 cells in a dose- and time-dependent manner, while cinobufagin had no cytotoxic effect on BEAS-2B cells. In vivo, cinobufagin inhibited the proliferation, migration, and invasion of A549 cells and promoted their apoptosis. The occurrence of the above phenomena was accompanied by an increase in FOXO1 expression and a decrease in G9a expression. In A549 cells, CNB did not reverse the changes in the proliferation, migration, invasion, and apoptosis of A549 cells after FOXO1 was successfully silenced. CONCLUSION: Our study provides the first evidence that cinobufagin suppresses the malignant biological behaviours of NSCLC cells in vivo and in vitro and suggests that mechanistically, this effect may be achieved by inhibiting the expression of the histone methyltransferase G9a and activating the tumour suppressor gene FOXO1. Taken together, our findings provide important insights into the molecular mechanism underlying cinobufagin's anticancer activity, and suggest that cinobufagin could be a candidate for targeted cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células A549 , Animais , Apoptose , Bufanolídeos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/farmacologia , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Antígenos de Histocompatibilidade/farmacologia , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA